
Embedded systems have shown rapid development

in the last 15 years. There was a time when they

were only to be found in complex technical products

that were never used in the average household, but

now they are everywhere. The general public may

be unaware of them since they are embedded and

work behind the scenes, but we in the “embedded

community” know that every ordinary member of

society comes into contact with them every day.

Whether in the car, cell phone, MP3 player, home

cinema, washing machine, or cooker – embedded

systems are in daily use in almost all technical de-

vices, using one or more microcontrollers, digital

signal processors, and of course their respective

software. And we, the “embedded community”,

have to make sure that everything works perfectly

and without any fuss.

TRACE32 – a premium product
Lauterbach was founded 29 years ago in the pio-

neering age of embedded systems. It has managed

to turn the challenges of this market into techno-

logical and economic success by a mixture of the

right know-how and enormous commitment. Just

as we can no longer imagine items of daily use

without embedded systems, a developer in the

embedded systems industry cannot imagine work

without TRACE32. Whether in Europe, the USA,

or Asia, TRACE32 is recognized as the premier

product and the world’s leading brand in micropro-

cessor development tools, which is borne out by

some very impressive fi gures: In 2007 alone, over

7000 new workplaces worldwide were

equipped with TRACE32!

TRACE32 stands for continuity, but

mainly for progress and inventive-

ness. One or the other is always in the

foreground, depending on the branch

of industry. In this coming year, we

intend to push ahead strongly in the

development of our products and in-

vest in solid growth so that you can

continue to rely on Lauterbach as an

innovative partner.

The past year, 2007, was of course not

a year of standing still. In this news-

letter for 2008, we wish to show you the

technological progress we have made

during the last year. We would like to

encourage you to try some of these new features

for your development to improve your effi ciency.

We will be presenting many of these innovations at

the ESC Silicon Valley, to which, as every year, we

cordially invite you.

What’s new at Embedded
Systems Conference 2008

Contents

Hardware debugging in UML 3

New supported processors 8

Debugging with power-saving modes 9

New debugging concept for SMP
systems

13

New preprocessors / NEXUS adapters 17

CombiProbe 18

Working successfully behind the scenes

www.lauterbach.com

RTOS

DigRF

CFIUML

TRACE32

Combi ProbePower Saving

STM ITM

WinCE

SMP

Nexus
Auto-
Focus

TI DSP

www.lauterbach.com

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

2

PowerDebug

PowerTrace

Power-
Integrator

PowerView

PowerProbe

Today, fast and effi cient software development is

often the decisive factor in the launching of new

products. To avoid having to wait for the fi rst hard-

ware prototypes at the start of the development

phase, Virtual Prototypes (software models of the

hardware) are becoming increasingly common.

As soon as a Virtual Prototype is available for the

target hardware, work can start on debugging the

drivers, the operating system, and the application.

So that we can offer our customers the profes-

sional development environment TRACE32 in this

early phase of their project, Lauterbach has been

supporting the debugging of software models

since 2007. The debugging interface used here is

the debugging API of the Virtual Prototype.

TRACE32 for Virtual Prototypes

CoWare® CoWare

Virtual Platform

ARM

Synopsys® Virtual Platform

(formerly Virtio)

ARM

XScale

VaST ™ VaST

Virtual System

Prototype

ARM

OAK

PowerPC/eTPU

SH2A

StarCore

TeakLite

TriCore/PCP

V850

Virtual Prototypes

TRACE32 as GDB front end

Since early 2007, the TRACE32 GUI can also be

used for process debugging with GDB. The sup-

ported communication interfaces to the target

hardware are Ethernet or RS-232.

Debugging application processes
To debug two or more application processes simul-

taneously, Lauterbach provides its own debugging

agent – t32server, which is started fi rst in the Linux

terminal window. Subsequently via the TRACE32

GUI several GDB servers for testing application

processes can be started. The t32server service is

then responsible for data exchange between the

TRACE32 GUI and the GDB servers (see Fig. 1).

Other innovations
In the 2007 Newsletter, Lauterbach announced

“Integrated run- & stop-mode debugging for em-

bedded Linux applications”. This year this is fol-

lowed by a new concept for debugging SMP Linux

(see page 13).

 ARM Available

 I386 Available

 MIPS32 Available

 PowerPC Available

 SH4 Planned

 XScale Available

GDB front end

GDB
server 1

Task
1

Task
2

Task
3

GDB
server 2

GDB
server 3

Ethernet / RS-232

t32server

TRACE32
GUI

Embedded LINUXEmbedded LINUX

Fig. 1: The t32server service, enabling simultaneous debugging of
two or more application processes

Introduction
It will soon no longer be possible to master the

growing complexity of software without the use of

CASE tools. UML, especially, has enabled the uni-

form design of modular software components, in-

cluding automatic code generation, which prevents

common coding errors right from the start.

However many companies shy away from the per-

ceived effort required for the changeover to these

new techniques. They have a code base that has

been built up over decades and although the soft-

ware has been constantly extended and improved.

This has also led to the creation of more and more

“spaghetti code”. Millions of functioning lines of

code would need to be analyzed, re-programmed,

and fi nally re-tested.

In most cases these fears are unfounded. Existing

C code can be transferred to a UML model element

with almost no changes necessary. Future exten-

sions can then be written as UML models, gener-

ated, and integrated with the “old” C code. As a

result, an easy and progressive transition from C to

UML is possible. The following example explains

these procedures:

1. Transfer from “old” C code to UML.

2. Integration of a new functionality coded in UML.

3. Uniform testing and debugging in UML, C++

and C.

Old C code
At the outset, we have a fi nished project in C code.

The following example uses a traffi c light system

(which is a favorite of software designers due to

its simplicity). There is a standard intersection with

four sets of traffi c lights. The traffi c lights located

opposite each other are controlled in parallel. The

traffi c lights at the right angle to them are, of course,

controlled complementary. The different traffi c light

phases are: red – red and yellow – green – yellow –

red. During the red phase of one set of traffi c lights,

right of way switches to the opposite direction.

As a result, there is a short period when the lights

facing in all directions are on red (this is important,

as we shall see later).

This circuit is coded in C as a simple control (switch-

case) in a continuous loop (while (1)). This continu-

ous loop is found directly in the “main()” routine of

the application, and is called immediately after ini-

tialization (see Fig. 3).

New requirements
The street planners have decided that a tramline

should cross the intersection in both directions 〉〉

www.lauterbach.com 3

NEWS 2007
DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

PowerView

PowerDebug

Power-
Integrator

PowerProbe

PowerTrace

Integration, testing, and debugging of C code
together with UML-generated sources

Fig. 2: Adding tram traffi c lights to a traffi c intersection

 ...
 int main (void)
 {
 horizontal = vertical = red;
 state = closed_to_h;

 while (1)
 {
 switch (state)
 {
 case closed_to_h:
 wait (1);
 horizontal = yellowred;
 state = yellowred_h;
 break;

 case yellowred_h:
 wait (3);
 horizontal = green
 state = green_h;
 break;
 ...

Fig. 3: Existing C code for traffi c-light control; the “main()” routine
includes a continuous loop that contains the logic as a switch-
case construct.

www.lauterbach.com

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

4

(vertically as well as horizontally, refer to Fig. 2 on

page 3). Therefore, the trams must be stopped at

the intersection by their own set of traffi c lights. At

the request of the tram driver, the intersection is

blocked for cars at the next red light phase, and the

tram is given right of way.

UML wrapper for C code
We could, of course, just “patch” these require-

ments into our C code. But doing so would only

make the function larger and more complicated,

which is exactly what we want to avoid. So instead

of this, we will take a modular approach to the

problem and solve it with the help of UML.

Firstly, we need to “trans-

fer” the existing appli-

cation over to our UML

model, which is easier

than it sounds: We create

one class, called “Car-

Junction”, which contains

the complete “old” appli-

cation (see Fig. 4).

The only thing that we need to adapt are the corre-

sponding interfaces. The usual continuous loop in

main() is already part of the framework and there-

fore has to be omitted. Instead, “main()” is renamed

“processJunction()”, and this becomes our new

starting point. The end point of the function will be

the phase when all traffi c lights are on red. Now, if

required, we can execute additional actions during

this red phase (see Fig. 5). – And that’s it.

UML design for new requirements
Now we can take care of the design for the new

requirements. We build a class called “Junction”,

which contains the old traffi c light controls, called

“CarJunction”, as well as two new tram traffi c lights

(Fig. 6). The design is now fi nished, and we can

focus on the behavior of the extended intersection,

using a state transition diagram.

The old application is once again used as a starting

point, and its whole behavior is incorporated into a

single state of the new intersection (state: cars), see

Fig. 7 on the opposite page. When the new model

has this state, it works in exactly the same way as

the old application. Only when the new feature – the

tram driver requests right of way – is required, the old

code is left and the new model starts. The phases

and the transition of states for both tramlines are de-

fi ned in the state diagram: request – wait – release –

wait (possibly a switch between tramlines). This

completes our model of the new requirements. 〉〉

PowerTrace

Power-
Integrator

PowerView

PowerProbe

PowerDebug

Fig. 4: The “CarJunction”
class, containing the com-
plete “old” application

 void processJunction (void)
 {
 horizontal = vertical = red;
 state = closed_to_h;

 do
 {
 switch (state)
 {
 case closed_to_h:
 wait (1);
 horizontal = yellowred
 state = yellowred_h;
 break;
 /*........*/
 case yellow_v:
 wait (3);
 vertical = red;
 state = closed_to_h;
 break;

 } // switch (state)
 } while ((state != closed_to_h)
 && (state != closed_to_v));
 } // processJunction()

Fig. 5: Modifi ed C code that can be integrated in the UML tool
in this form

Fig. 6: The new class, “Junction”, integrating the “old” traffi c-light
switching and the two new traffi c lights for the tram

Code generation
We can now generate the executable application.

For good UML tools this is all that is required for

generating the fi nished application for the above-

mentioned model. However, now is the time to

note a few points about integration. Our initial ap-

plication is written, and remains, in C. UML tools,

however, normally generate C++ code, meaning

that our “CarJunction” is a wrapper class that ref-

erences the C code. Here, the usual adaptations

between C and C++ must be taken into account.

Typically, an RTOS is used to manage the model

and must be integrated as required. Once all this

has been done, a simple press of a button gener-

ates a ready-to-run application from the model.

Target run
In the fi eld of embedded technology, the target

hardware is often different from the computers

used for development. This means that we need to

load the generated application onto the so-called

“target” and run it there. This can be done using any

external tool that can install code on the target.

This is especially easy if the UML tool and the de-

bugger communicate over a common (software)

interface, such as the integration between the UML

tool Rhapsody from Telelogic and the TRACE32

debugger from Lauterbach. This allows you, at the

press of a button in the modeling tool, to load the

application to the target over the debug interface,

and – if required – start it straight away. The com-

plete cycle of design – modeling – generation – run

is possible in one GUI.

Testing in C
As was mentioned at the start, performing testing

and debugging in a heterogeneous environment

pose certain requirements. It must be ensured that

the whole application can be tested in its respec-

tive function and implementation.

Although we are assuming that we already had a

functioning application in C, debugging should still

be possible. After all, the transfer of new features

to the “old” code needs to be tested, and the old

source code maintained. At least for this part of the

application any commercial debugger can be used,

as it is now standard in the fi eld of embedded tech-

nology to debug C code.

Testing in C++
The process becomes more interesting when we

begin testing the new features at source level.

Most UML tools generate C++ code with all the 〉〉

www.lauterbach.com 5

NEWS 2007
DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

PowerView

PowerDebug

Power-
Integrator

PowerProbe

PowerTrace

Fig. 7: State diagram of new traffi c-light switching

characteristics that belong to it, such as templates,

polymorphism, and exception handling. It must be

remembered that the debugger used must provide

full support for the C++ dialect of the compiler. The

TRACE32 debugger from Lauterbach supports all

current C++ compilers, and so guarantees com-

fortable debugging of object-oriented C++ code.

Testing in UML
But of course, we didn’t write our code in C++, but

rather in UML. And what would

make more sense than to carry out

debugging on the modeling level?

Rhapsody from Telelogic offers sev-

eral options to serve this purpose.

If the behavior of the application is

completely modeled in UML, the

sequence can be simulated directly

from the model. For simple behavior analysis, the

actual target hardware is not required. As the tar-

get will have a different timing than the simulation,

the application can also be run as an “animation”

on the real target. The UML tool controls and vi-

sualizes the target process over a communication

channel (serial or Ethernet). So it is possible to per-

form single steps through state charts or to induce

events.

In combination with a TRACE32 debugger, this

communication can also take place over the de-

bug interface if there is no other interface available.

Direct debugging in the UML model is made pos-

sible via “animation”.

Integrated UML -> C++ -> C
debugging
Now we have a situation spread over three levels:

UML, C++, and C. When an error is found, espe-

cially in C++ code, it is better to repair it in the mod-

el, and not in the generated C++ code itself. On the

other hand, the debugging of the implementa-

tion of a model element is best carried out in the

source, without having to search for it.

The integration of TRACE32 and Rhapsody offers

extensive functionality in order to link these levels

together (Fig. 8), such as the implementation of

simple, interdependent navigation. A single mouse

click on a model element in Rhapsody is enough

to display the corresponding source code in

TRACE32. This then allows the extensive analysis

of variables, function calls, and so on. It also works

the other way around; with a simple click on a line

of source code in the debugger, the accompany-

ing model element is highlighted in the UML tool. 〉〉

www.lauterbach.com

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

6

PowerTrace

Power-
Integrator

PowerView

PowerProbe

PowerDebug

Fig 8: The integration of TRACE32 and Rhapsody allows a
debugging in UML, C++ and C.

CFI fl ash programming
Automatic generation of the fl ash declaration via

the Common Flash Memory Interface – CFI – has

been supported since September 2007.

To program a fl ash, you always had to have detailed

knowledge about the exact type and organization

of the device. Thanks to the special query mode of

CFI-conformant fl ash devices, TRACE32 can now

identify the parameters needed for programming

and use this data to create a fl ash declaration

automatically.

Serial fl ash / NAND fl ash
Since September 2007, TRACE32 has supported

the programming of NAND fl ash devices as well

as serial fl ash devices with a separate command

(FLASHFILE).

Code overlays
Since December 2007, TRACE32 has support-

ed the symbol management for code overlays in

ELF fi les with the command sYmbol.OVERLAY. The

ARC, ARM, and PowerPC architectures are cur-

rently supported. Further architectures are planned

for 2008.

PCP debugger
Since November 2007, a separate TRACE32 in-

stance has to be started to debug the Peripheral

Control Processor – PCP – of the Infi neon TriCore

processor. This innovation was needed to enable

the loading and testing of C code for the PCP.

Of course this instance is also used to confi gure

the PCP trace and analyze the trace information.

The license for the PCP debugging and tracing is

included in the scope of delivery of the TRACE32

debugger for TriCore.

www.lauterbach.com 7

NEWS 2007
DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

PowerView

PowerDebug

Power-
Integrator

PowerProbe

PowerTrace

This is especially helpful if a problem is found with

the debugger, which needs to be repaired in the

model. A lengthy search and navigation to the

relevant element thus becomes unnecessary.

Debugger breakpoints can also be defi ned in the

model and the target can be set into Go or Stop

status. This enables you to set a breakpoint at a

class and start the target, all from within the UML

tool. The debugger stops the application as soon as

the model element under examination is invoked.

Summary
A complete redesign is not always necessary.

Particularly for projects where re-engineering is not

possible due to time or organization constraints, a

step-by-step approach is often appropriate. This

limits the effort required and allows to import the

existing software step by step into a modern and

innovative CASE tool.

It is, of course, essential that the tools used in this

process help and don’t hinder; the selection of the

correct tools is an important factor. They should

not just be able to perform these tasks, but should

also encourage them.

Lauterbach and Telelogic have achieved just this

with the integration of their tools TRACE32 and

Rhapsody. Both companies want to help their cus-

tomers keep software quality at high levels, despite

increasing complexity and ever more requirements.

Now nothing stands in the way of modernizing your

existing code bases with UML.

Latest news in brief

www.lauterbach.com

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

8

PowerTrace

Power-
Integrator

PowerView

PowerProbe

New supported processors

PowerDebug

P.A. Semi PWRfi cient™ Q2/2008

Renesas H8SX Available

Tensilica Xtensa

Processors

Available

Texas
Instruments

TMS320™C28xx Available

New architectures
PWRfi cient
The PA6T-1682M dual-core processor will be the

fi rst 64-bit PowerPC of the PWRfi cient architecture

supported by a Lauterbach debugger.

TMS320C28xx
With the debugger for the TMS320C28xx DSPs,

Lauterbach is providing even more support for

the TMS320 Processor Platform from Texas Instru-

ments.

New derivatives

AMCC PPC405
- PPC405EX / EXR

PPC44x
- PPC460EX

ARC ARC
- ARC® 700 Core

- ARCtangent-A4

- ARCtangent-A5

Freescale™ ColdFire
- MCF52110 / MCF52100

- MCF5221x

- MCF523x / MCF532x

- MCF5372 / MCF5373

MPC5500
- MPC551x

- MPC56xx

MPC5200
- MPC512x with

 AXE audio processor

PowerQUICC II
- MPC8377

PowerQUICC III
- MPC8572

Freescale™

(cont.)

ARM11 / StarCore
- MXC91321

Infi neon C166S
- XC22xx / XC23xx / XC27xx

- XE166

TriCore
- TC1736

- TC1767 / TC1767ED

- TC1797 / TC1797ED

Microchip MIPS32
- PIC32™

NXP ARM9
- LPC3000

MIPS32
- PNX83xx / PNX85xx

STMicro-
electronics

MPC5500
- SPC563Mxx

- SPC560Bxx / Pxx / Sxx

Cortex-M
- STM32

Texas
Instruments

Cortex-A / DSP
- OMAP3430

In response to constantly rising demands for
economical use of energy and long standby
times, modern cores often have various differ-
ent energy-saving mechanisms. These allow the
software, whenever possible, either to reduce
the core frequency or to switch off the core com-
pletely. However, these so-called energy-saving
modes can adversely affect communication be-
tween the debugger and the core. In the follow-
ing, with the ARM architecture as an example,
we show variants for problem-free debugging
of programs using energy-saving modes.

Ignoring energy-saving modes
Of course, the fi rst and easiest way is to tell the

core to ignore energy-saving modes during de-

bugging. For example, ARM11 has a so-called

Powerdown Disable Bit. When this bit is set, the

core activates a line that informs the external pow-

er and clock management about the debugging.

If then the program tries to activate an energy-

saving mode, the power and clock management

can simply ignore it to avoid problems during de-

bugging. Setting the Powerdown Disable Bit is one

of the basic settings of the TRACE32 debugger for

ARM11, Cortex-A, and Cortex-M.

If developers want to test

the behavior of the design

with regard to energy-saving

modes, they can of course

reset the Powerdown Disable
Bit with a debugger option

(SYStem.Option PWRDWN
ON, see Fig. 9).

However, there are many ARM-

based chips that do not have

a Powerdown Disable Bit. In

this case, a special debug

version of the software with-

out instructions for activating

energy-saving modes could

be created. However, the dis-

advantage of this is that the

debug version of the software

would be different from the

release version.

But why can debugging and use of energy-saving

modes lead to problems? In the fi rst part of this

article, we look at single-core chips: How does

switching off (core) power or clock affect debug-

ging? Next, we look at multi-core chips. From the

large number of possible challenges, we concen-

trate on the effect that switching off the clock of

a single core has on the debugging of the entire

chip.

Switching off power
At the VTREF pin (target voltage reference pin) of

the JTAG connector, the debugger can detect a

powerdown. If the user confi gures the debugger to

use this energy-saving method, the debugger can

wait until power-up instead of issuing an error mes-

sage (StandBy mode).

In practice, the debugger can be in one of the two

following states:

• Up (StandBy): the processor has power and

there is communication between the debugger

and the processor.

• StandBy: power is off and the debugger keeps

the ARM processor in reset over the SRST line.

The debugger waits for power to be switched on

again (see Fig. 10).

When power is switched on again, the debugger

releases the reset line and the processor runs as it

would after a power-up reset.

However, the power-up reset of the ARM proces-

sor resets the debug logic, the ETM/ETB logic,

and the assignment for the ETM pins. The settings

that were active before powerdown are lost. 〉〉

www.lauterbach.com 9

NEWS 2007
DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

PowerView

PowerDebug

Power-
Integrator

PowerProbe

PowerTrace

Debugging with power-saving modes
for ARM cores

Fig. 9: The PWRDWN
option, defi ning whether
energy-saving modes
are ignored or not dur-
ing debugging

Power is
switched on

Power is
switched off

StandByStandBy

Up (StandBy)Up (StandBy)

Fig. 10: Instead of issuing an error message, the debugger waits
for power-up following a powerdown.

Seamless continuation of debugging is possible

only if the debugger manages to restore these set-

tings before the ARM processor starts executing

the program.

For the debugger to be able to carry out the neces-

sary restore actions at power-up, the target hard-

ware must meet some requirements.

The best case
The best case is when the following requirements

are met:

1. The debugger can keep the ARM processor in

reset over the SRST line.

2. The processor reset (SRST) and the reset for the

debug logic (TRST) are separate lines.

3. Via the VTREF pin of the JTAG interface, the de-

bugger can quickly detect that power has been

switched off.

If these requirements are met, the debugger only

releases the reset for the debug logic when it

detects power-up. The settings of the debug logic

and the ETM/ETB confi guration are now restored.

Next, the processor reset is released and debug-

ging can be continued seamlessly, albeit somewhat

delayed (see Fig. 11).

Since the I/O pins are confi gured via memory

mapped registers, they cannot be restored for

the ETM trace port before the processor reset is

released and the program starts, so the program

itself has to activate the ETM port as fast as pos-

sible.

Other cases
If requirements 1 and/or 2 are not met, the ARM

processor starts up at power-up (see Fig. 12), while

the debugger simultaneously restores the debug

logic and the ETM/ETB confi guration. This can

have undesirable side effects. At the same time,

of course, the on-chip breakpoints and the trace

broadcasting are inactive in the restore phase.

Switching off the clock

Switching off the processor clock is a completely

different challenge for the debugger. We are deal-

ing here with the communication between the de-

bugger and the processor, or to be more precise,

the communication between the debugger and the

on-chip debug logic. This communication is almost

always running, even when the ARM processor is

processing the program.

As long as the debug logic is independent from the

processor clock the communication works, even if

the processor clock is switched off. For clocking

the (as asynchronously standardized) debug logic,

however, often a delayed and divided processor

clock is used. You know this is the case if you have

to use the command SYStem.JtagClock RTCK

when you confi gure the debugger.

Switching off the processor clock can affect com-

munication between the debugger and the on-chip

debug logic if two requirements are met:

1. The debug logic clock depends on the processor

clock.

2. The processor clock is switched off during

communication between the debugger and the

on-chip debug logic.

Now, when the processor clock is switched off, the

following happens:

1. The ARM processor freezes its current state.

2. The debug logic also freezes its current state

since its clock depends on the processor clock. 〉〉

www.lauterbach.com

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

10

PowerDebug

Power-
Integrator

PowerView

PowerProbe

PowerTrace

nTRST

Core running shut down reset running

nSRST

VTREF

Fig. 11: Following power-restore, fi rst the debug logic and the
ETM/ETB confi guration are restored (green arrow). Only then does
the ARM processor start to execute the program.

Core running shut down running

nSRST / nTRST

VTREF

*

(* = reset)

Fig. 12: Undesirable side effects resulting from a processor restart
while the debugger is restoring the debug logic and the ETM/ETB
confi guration (red arrow)

3. The debugger breaks off communication with the

on-chip debug logic after some timeout since

the on-chip debug logic no longer responds.

When the processor clock is switched on again,

the debug logic resumes communication with the

debugger at exactly the place where it was frozen,

while the debugger has long since re-initialized

communication since it received no response from

the debug logic.

Since the debug logic of the ARM processor is con-

trolled by the debugger, the debugger would have

to reset the debug logic in order to synchronize

communication again. However, at least for a brief

period during the program run, all on-chip break-

points would be deleted. This is far from ideal.

The following solutions have proved reliable for

customers:

1. Checking the processor clock

We recommend confi guring the debugger so that

it checks whether the processor clock is running

before starting communication with the on-chip

debug logic. For this the debugger puts the debug

logic in Run Test/Idle mode at the end of each com-

munication. In this mode, the processor clock can

be easily tested before resumed communication.

2. Reducing status queries

While the ARM core is processing the program, the

debugger sends status queries to the debug log-

ic 10 times a second. This way it checks whether

the program is still running or whether it has been

stopped. A next step is to reduce the frequency of

these status queries. We recommend a query every

2-3 seconds (SETUP.URATE 3.s). This solution is

quite simple: fewer queries reduce the risk of com-

munication problems.

3. Increasing timeout

If the program switches off the processor clock

very often but always only very briefl y, the debug-

ger can be confi gured so that it simply waits longer

before breaking off communication with the debug

logic (SYStem.POLLING SLOW). In certain circum-

stances, it might not even notice that the processor

clock was switched off.

Multi-core chips
Multi-core chips, which use only one JTAG inter-

face for debugging daisy-chained cores, require

additional measures if energy-saving modes are

used for individual cores. Consider the following

situation as an example: the clocking of the debug

logic depends on the core clock (RTCK) for core 2

and now the clock is switched off for only this core

(Fig. 13).

As described in the section “Switching off the

clock”, the debug logic of core 2 is frozen in this

case. Since the chaining of the cores means that

debug commands for core 1 / core 3 have to run

through core 2, the debugging for the entire chip is

now blocked.

To be able to continue debugging without compli-

cations when the clock for core 2 is switched on

again, we recommend confi guring the debugger

for the individual cores so that a check is made on

whether the core clock is running, before commu-

nication with the debug logic starts.

However, this is no solution to the problem that de-

bugging is blocked for the entire chip as soon as

the debug logic of a single core is frozen. Some

good solutions exist for this problem today, but the

chip manufacturers consider their solutions to be

confi dential, so we cannot present them here.

We will therefore restrict ourselves in the following

to explaining how the CoreSight DAP technology

solves this problem.

In the case of multi-core chips whose debug and

trace functionality is based on the CoreSight tech-

nology, the TRACE32 debugger no longer com-

municates directly with the debug logic of the 〉〉

www.lauterbach.com 11

NEWS 2007
DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

PowerView

PowerDebug

PowerProbe

PowerTrace

Power-
Integrator

TMS

TCK

RTCKRTCK

TDO

TDI Core 3
TMS TCK

TDI TDO

Core 1
TMS TCK

TDOTDI

Core 2

TDI TDO

TMS RTCK TCK

Fig. 13: Switching off the clock for core 2 blocks debugging for
the whole chip.

www.lauterbach.com

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

12

PowerView

PowerProbe

individual cores but with a so-called DAP (Debug

Access Port) instead. The DAP’s task is to distri-

bute the debug commands to the individual cores.

For debugging with energy-saving modes, the most

important innovation of the DAP technology is that

the DAP has its own power and clock domain. This

means that the DAP is unaffected by the energy-

saving modes of the individual cores. At the same

time, the cores are no longer daisy-chained under

CoreSight. Instead,

• Their debug logic is controlled by bus accesses

if it is implemented via memory mapped debug

registers.

• Their debug logic is controlled over a JTAG ac-

cess port if the core works with the traditional

debug logic.

These new control mechanisms guarantee that

the DAP can always address the individual cores

directly and that no further debug commands are

blocked by any frozen cores (see Fig. 14).

It can be generally said for multi-core chips that

if the debugging of energy-saving modes is par-

ticularly important in the development phase, you

should discuss this subject with the semiconduc-

tor manufacturer when choosing your chips. The

experts of the Lauterbach team will be happy to

advise you on this subject.

Analyzing energy consumption
For all ARM-based chips with ETM and an off-chip

trace port, Lauterbach offers the option of analyz-

ing whether the energy-saving modes really result

in a maximum reduction of energy consumption for

the design. To answer this question, a measuring

arrangement is required that records the currents

and voltages at selected measurement points and

correlates them with the program fl ow information

output at the trace port.

Lauterbach offers such a measuring arrangement

since 2007. For this you need additionally to the

TRACE32 debugger:

• A real-time trace for the ETM

• An Analog Probe

• A Lauterbach logic analyzer; either the IProbe
Logic Analyzer in PowerTrace II or the TRACE32-
PowerIntegrator

Since in this measuring arrangement both the cur-

rents and voltages as well as the program fl ow are

synchronously timestamped by the TRACE32 soft-

ware, the links between the control software fl ow

and the current/power consumption can be easily

displayed and analyzed. Fig. 15 shows as an ex-

ample the absolute and percentage share of total

energy consumption calculated for each function

executed during the measurement time. In this way,

the important energy-consumption and standby-

time data can be verifi ed.

PowerDebug

PowerTrace

Power-
Integrator

Memory mapped
debug register

Memory mapped
debug register

ARM core

Memory access port to APB/AHB/AXI

JTAG access port

ARM core

ARM core ARM core

JTAG JTAG

TRACE32
CoreSight

DAPJT
A

G

Fig. 14: The DAP can always address the debug logic of the in-
dividual cores directly. This means it is no longer possible for the
switching off of a clock for an individual core to block debugging
of the entire chip.

Fig. 15: Graphic showing the connection between the program
and the current/power consumption of the hardware

www.lauterbach.com 13

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

PowerView

PowerDebug

PowerProbe

PowerTrace

Power-
Integrator

Lauterbach, the leading manufacturer world-
wide of high-quality debuggers and real-time
trace tools, is presenting its new debugging
concept for SMP systems at the ESC 2008. SMP
systems use an operating system to distribute
processes dynamically to several cores or hard-
ware threads. SMP Linux on a MIPS 34K will be
demonstrated live at the fair.

Hardware parallelization
To achieve higher processor performance for com-

plex applications and to save energy, more and

more parallelization of tasks is used. The most

popular method is to provide several identical

execution units that can all process the same task.

To most readers, the term “identical execution units”

means symmetric multi-core processors. It is easy

to imagine that the kernel of an operating system

is running permanently on a core and ensures that

the application processes are evenly distributed to

all cores (see Fig. 16).

However, for the parallelization of tasks not nec-

essarily a multi-core processor is required. Hard-

ware multithreading, for example, is an approach

that enables parallelization also for single-core

processors. Here, we deal with a basic problem of

cores with pipeline architecture: cache misses or

data dependencies between the instructions mean

that the pipelined instruction processing has to be

stalled in order to wait for the availability of required

data. The greater the difference between instruc-

tion processing time and memory access time, the

higher the performance loss.

Hardware multithreading deals with this situation

by making the core process several mutually inde-

pendent tasks quasi-simultaneously. In the case of

an operating system, “tasks” and “processes” are

equivalent.

In principle, this works as follows: As soon as a

task can no longer be further processed because

required data is not yet available,

the processing of another task is

continued.

Fig. 17 shows the processing of

3 tasks on 3 cores with simple

pipeline architecture (at the top)

and then (at the bottom) shows the

execution on a multithreaded core.

In order for hardware multithread-

ing to work, fast switching between

tasks must be possible. This can

be done simply by giving each task

a separate register set for its con-

text. With this method, it is easy to

deduce that the number of register

sets provided by the core defi nes

how many tasks can be processed

in parallel. For the MIPS 34K the

number is fi ve. In this way, one 〉〉

New debugging concept for
symmetric multiprocessing (SMP)

Fig. 16: SMP Linux on a dual-core processor

SMP Linux & applications

Hardware with a dual-core processor

Core 2Core 1

Fig. 17: No more stalls in the pipeline, thanks to the quasi-simultaneous processing of
several tasks

Task 1

Processing on 3 cores with simple pipeline architecture

Processing on a multithreaded core

Task 2

Task 3

process updateload

miss

miss

miss

missmiss

miss miss miss miss missmiss

load

miss miss miss

process update

process updateload

load process update load

load

load process update load processupdate loadprocess

www.lauterbach.com14

PowerDebug

Power-
Integrator

PowerView

PowerProbe

PowerTrace

NEWS 2008
DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

“execution unit” (a so-called hardware thread) de-

rives from each register set (see Fig. 18).

SMP operating systems
At the hardware level, the parallelization of pro-

cesses is implemented by symmetric multi-core

processors or multithreaded cores. Now software

is needed to organize the parallelization. An operat-

ing system is normally used for this purpose.

One variant, which is primarily suitable for hardware

with identical execution units, is operating systems

that implement symmetric multiprocessing (SMP).

The central feature of SMP operating systems is

the dynamic distribution of task/processes to the

available cores or hardware threads at program

runtime.

Other features:

• One instance of the operating system operates

all cores or hardware threads.

• Each application process can run on each core

or hardware thread. As a rule, only the kernel is

rigidly assigned to a core or hardware thread.

• All cores or hardware threads have equal rights

to request and use resources (e.g.: memory,

external interfaces, external devices).

• The operating system provides the functions for

distributing resources to the cores or hardware

threads.

New debug concept
At present, the TRACE32 concept enables just one

core to be debugged with one instance of the de-

bugger (Core View). Up to now, this concept has

also worked perfectly for multi-core processors

since these processors were also operated as

asymmetric multiprocessing systems (AMP). Asym-

metric multiprocessing means: An independent

instance of an operating system runs on each core.

For AMP systems, this always statically defi nes

which process is running on which core. In this

way, the debug information can also be uniquely

assigned to the corresponding core.

In contrast, on SMP systems, the processes are

not assigned to the cores or hardware threads until

runtime. For this reason, it no longer makes sense

to start a debugging instance specifi cally for the

debugging of a selected core or hardware thread.

System View

As an alternative to the Core View, which works

very well for AMP systems, there is now the System
View for SMP systems.

With the System View, only one instance of the

TRACE32 debugger is started to debug all cores

or hardware threads (see Fig. 19). Here too, root of

information display is one core or hardware thread.

The new aspect here is that the information 〉〉

Fig. 18: SMP Linux on a multithreaded core – here MIPS 34K

Thread
1

Thread
5

Thread
4

Thread
3

Thread
2

SMP Linux & applications

Hardware with MIPS 34K

Fig. 19: Only one instance of the TRACE32 debugger is used for
debugging all cores or hardware threads.

Thread
1

Thread
5

Thread
4

Thread
3

Thread
2

Hardware with MIPS 34K

SMP Linux & applications

www.lauterbach.com 15

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

PowerView

PowerDebug

PowerProbe

PowerTrace

Power-
Integrator

display can be switched by a command to another

core or hardware thread.

Process debugging can now be done as follows:

1. The current list of all active task/processes is

used to identify the core or hardware thread on

which a task/process is running (Fig. 20). Linux

uses here the term CPU instead of using core or

hardware thread.

2. A command is used to switch the information

displayed in the debugger to the required core or

hardware thread (Fig. 21).

Common breakpoints

The fact that an SMP operating system does not

assign application processes to a core or hardware

thread until runtime also has consequences for the

setting of on-chip breakpoints.

A simple example: The “sieve” process is to be

stopped as soon as it writes to the variable “xyz”.

In order for the debugger to be able to implement

this request, it must program the break logic of all

cores or hardware threads for this break condi-

tion since it cannot know beforehand the core or

hardware thread on which the “sieve” application

process will run. This means that even if each core

or hardware thread has its own break logic, the

debugger programs the breakpoints for the user

as if there were only one break logic shared by all.

When setting of software breakpoints, for the im-

plementation of which the original instruction in

memory is temporarily overwritten by a break in-

struction, there are no changes compared to AMP

systems. Operating systems protect the address

spaces of processes from each other. However, if

the same application process is started more than

once, Linux (for example) loads the program code

only once. Each instance of the application process

thus sees the same program memory as well as the

software breakpoints set there. To make sure that

the program execution is stopped only in the de-

sired application process, the TRACE32 debugger

enables the setting of process-specifi c software

breakpoints.

Summary
The systematic extension of the TRACE32 concept

enables Lauterbach to offer its customers simple

debugging of embedded designs that use an SMP

operating system for controlling several cores or

hardware threads. To be able to use this new con-

cept for debugging SMP operating systems, you

just need a TRACE32 debugger whose debug

cable has not only a license for the processor

architecture but also a second license such as a

multi-core license.

Following the support for the MIPS 34K, the de-

bugging of SMP systems for ARM and PowerPC

architectures is also planned for early 2008.

Fig. 20: The TASK.DTASK window, showing the core or hardware
thread to which SMP Linux has assigned a task/process

Fig. 21: The TRACE32 window, which always shows only the
context of a core or hardware thread. The number of the core or
hardware thread is shown in the status line.

www.lauterbach.com16

PowerDebug

Power-
Integrator

PowerView

PowerProbe

PowerTrace

NEWS 2008
DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

Further RTOS innovations
Windows CE 6.0 for ARM and SH4
TRACE32 now also supports Windows Embed-
ded CE 6.0 for ARM and SH4 architecture.
Since the end of 2006, developers have been able

to use the new version of Windows CE for their

projects. Version 6.0 introduced some fundamen-

tal changes in the kernel architecture. For exam-

ple, Windows CE now supports process address

spaces of 2 GB. For Version 5.0, these were limited

to 32 MB.

Since late 2007, an updated version of TRACE32
Windows CE Awareness has been available, so that

a TRACE32 debugger can now be used to monitor

and test all processes, threads and libraries simul-

taneously. In combination with a real-time trace

tool, a runtime analysis of Windows CE threads is

also possible. The confi guration of Windows CE
Awareness has been simplifi ed:

• The debugger now supports automatic detec-

tion of the kernel objects. This means that the

symbol information for the kernel no longer has

to be loaded explicitly.

• The Windows CE Autoloader of the debugger

simplifi es symbol management for the different

processes and libraries. If the autoloader is con-

fi gured accordingly (sYmbol.AutoLOAD.CHECK-
WINCE), the matching symbol information is auto-

matically loaded to the debugger when needed.

Integration in the Windows CE
Platform Builder
Since the beginning of 2007, Lauterbach debug-
gers can be used as hardware debug back end
for the Windows CE Platform Builder.
To debug the kernel and application processes in

Windows CE, Lauterbach offers an eXDI2 driver

that permits control of a Lauterbach debugger

through the internal debugger of the Windows CE
Platform Builder.

By means of target device connectivity, the

TRACE32 eXDI2 driver is fi rst integrated into the

platform builder (PB). As a result of this integration,

all debug commands of the PB debugger are now

translated into TRACE32 commands in the back-

ground and passed to the Lauterbach debugger.

The eXDI2 driver is available for Windows CE 5.0

and 6.0 as well as for Windows Mobile Versions 5

and 6.

Extensions
• Linux – Support for Xenomai Threads

• Linux – Symbol Autoloader

• OSE – Support for 5.2 Load Modules

• PXROS – Redesign for C167

DSP/BIOS for TMS320C28xx Available

eCOS for MIPS Available

FreeRTOS for ARM

and MicroBlaze

Available

HI7000 for SH4 Available

Linux for ARC and MicroBlaze Planned

LynxOS-SE for PowerPC Planned

NetBSD for ARM and PowerPC Available

OS/9 for ARM and PowerPC Available

RX4000 for MIPS Available

ThreadX for ARC and Blackfi n Available

ThreadX for Xtensa Planned

Windows CE 6.0 for ARM

and SH4

Available

μClinux for Blackfi n Planned

μClinux for MicroBlaze Available

μC/OS-II for V850 Available

μC/OS-II for Xtensa Planned

New supported RTOS

www.lauterbach.com 17

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

PowerView

PowerDebug

PowerProbe

PowerTrace

Power-
Integrator

New preprocessors /NEXUS adapters

Many SoCs (system on-chip designs) now have a

trace port that makes runtime information visible

off-chip. Such information can be the instructions

executed by the program as well as data transfers.

If an operating system is used, output of the cur-

rent task ID can be helpful. The best-known trace

ports are certainly ETM for the ARM architectures

and NEXUS for the PowerPC architecture.

To record runtime information Lauterbach offers

TRACE32-PowerTrace, a real-time trace tool. At

the hardware level an architecture-specifi c prepro-

cessor or NEXUS adapter receives the data from

the trace port and transfers it to the trace memory

(up to 4 GB) of the PowerTrace hardware. This

recorded information serves the user as the basis

for effi cient troubleshooting as well as for compre-

hensive runtime analyses of his design.

Lauterbach is now offering preprocessors and

NEXUS adapters for more than 30 processor archi-

tectures. Many more will be supported in 2008.

New NEXUS adapter for
MPC5500 architecture
From March 2008, the NEXUS adapter for the

MPC5500 architecture will be available in an im-

proved version using an advanced technology.

To respond fl exibly and quickly to new variants of

the NEXUS port, this adapter supports a port width

of up to 16-bit MDO and a voltage range of 1.0 V

to 5.0 V.

Lauterbach offers converters to adapt to the spe-

cifi c processors´ NEXUS port.

To guarantee optimum sampling of trace signals at

high trace port data rates, the new NEXUS adapter

also contains FPGAs for the automatic setting

of the optimum sampling instant (AUTOFOCUS

technology).

New AUTOFOCUS II preprocessors
To enable preprocessors to handle trace port

frequencies of over 500 MHz, the AUTOFOCUS II
technology was developed in 2006. The most im-

portant feature of this technology is the automatic

setting of the optimum sampling instant for trace

data. Based on this technology, further prepro-

cessors are now offered for a series of DSPs.

MicroBlaze
Since November 2007, a preprocessor for the

MicroBlaze architecture has also been available.

Using a 22-pin wide trace port, the MicroBlaze
Trace Core makes program fl ow as well as (op-

tionally) the data fl ow visible off-chip. Trace port

frequencies of over 100 MHz can now be handled

by the preprocessor.

TRACE32-PowerTrace

CPU specific debug cable &
CPU specific preprocessor

CPU specific NEXUS adapter

Program flow

Data flow

Task ID

Tr
ac

e
p

o
rt • NEXUS port width up to 16-bit MDO,

 2-bit MSEO, EVTI, EVTO

• Data rate up to 200 MBit/s

• 200 MHz at SDR or 100 MHz at DDR

• Voltage range 1.0 V to 5.0 V

• Adapter for different variants of the

 NEXUS port

• AUTOFOCUS technology

NEXUS adapter MPC5500 AF

New AUTOFOCUS II
preprocessors

Preprocessor for Ceva-X Q1/2008

Preprocessor for StarCore Q3/2008

Preprocessor for TMS320C55x

and TMS320C64x

Q1/2008

www.lauterbach.com18

PowerDebug

Power-
Integrator

PowerView

PowerProbe

PowerTrace

NEWS 2008
DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

CombiProbe
For fast output of important system informa-
tion at runtime, some cores now have simple
trace ports. These ports enable an application
program to make user-defi ned data visible off-
chip. For recording and processing this data,
Lauterbach offers a new tool option called
CombiProbe. Here we describe the hardware
and operation of this new product.

Instrumentation
Most developers are familiar with test scenarios for

which a simple printf() is the most effi cient imple-

mentation. Typical examples are output of diag-

nostic information or logging of important system

events, i.e., test scenarios where the application is

already working as intended, and now operational

tests have to be conducted. Usually, code instru-

mentation is used for these tests.

Two steps are necessary to make important system

information visible with instrumentation at program

runtime:

1. Instructions are inserted in the application pro-

gram to provide the necessary information.

2. A way has to be found to make this information

visible. An external communication interface

such as RS-232 or Ethernet is usually used for

this.

The great advantage of instrumentation is that only

the information of interest to the tester is made

visible. At the same time, however, large communi-

cation overhead is created since, as a rule, a further

communication interface has to be operated by the

operating system. If the interface is slow, consi-

derable runtime problems can result for the actual

application.

System Trace
The communication overhead created during in-

strumentation can be largely reduced if the core of-

fers a separate trace port for the output of system

information generated by the application program.

As an IP provider, ARM offers such a solution as

part of its CoreSight technology.

The CoreSight Instrumentation Trace Macrocell
(ITM) basically works as follows:

1. The application program writes the information

that has to be made visible to a 32-bit memory

mapped register as-

signed to the ITM.

2. The ITM makes the in-

formation visible either

directly over the Serial
Wire Output (see Fig. 22)

or together with other

trace data over the Co-
reSight Trace Port Inter-
face Unit (TPIU).

Many mobile phone manu-

facturers are already wor-

king with similar propri-

etary solutions for their

chips. However, to save money, they are interested

in a uniform standard for such a trace port. In May

2007 the “Test and Debug” workgroup of the MIPI

Alliance specifi ed, under the name “System Trace”,

a standard for a 4-bit trace port as well as a 34-pin

debug and trace connector.

Along with the standard-

ization, the functionality

of the trace port was

extended. Apart from

the system information

generated by the ap-

plication program, the

System Trace can now

output hardware infor-

mation too (see Fig. 23).

A programmable bus

watcher, e.g., can de-

tect and display specifi c

bus cycles, or a signal

monitor can return the

status of selected chip-

internal signals.

CombiProbe hardware
As a “Test and Debug” workgroup member,

Lauterbach took an active part in the System
Trace specifi cation and at the same time in the

development of a suitable debug and trace op-

tion named “CombiProbe”. Since October 2007,

Lauterbach has been marketing this new product.

CombiProbe is a combination of a special debug

cable and 128-MB of trace memory. It can, for ex-

ample, be plugged into the universal Lauterbach 〉〉

Fig. 22: CoreSight Instru-
mentation Trace over Serial
Wire Output

Instrumentation
Trace

Macrocell

32-bit register

Software data

Serial Wire Output
(asynchronous)

Fig. 23: System Trace specifi ed
by MIPI Alliance

Arbiter

Hardware data

System Trace Port
(4-bit data & 1 clock)

Software data

System
Trace

Module

base hardware such as the POWER DEBUG

INTERFACE / USB 2 (see Fig. 24). As target system

connection, the 34-pin debug and trace plug from

the MIPI Standard is used, comprising connec-

tors for a JTAG port and a 4-bit System Trace Port.
Lauterbach offers also adapters for other target

system connectors.

Operating concept
Additionally to the traditional debug functions

CombiProbe provides new confi guration com-

mands as well as commands for displaying and

analyzing recorded trace information.

Confi guration commands are:

• ITM.<subcommand> for confi guring the Instru-
mentation Trace Macrocell of CoreSight tech-

nology (see Fig. 25)

• STM.<subcommand> for confi guring a System
Trace Module

• SystemTrace.<subcommand> for confi guring

the CombiProbe

The SystemTrace command is also used to analyze

and process recorded trace data.

System information visible at the trace port can

be recorded as usual into the trace memory of the

CombiProbe and analyzed using TRACE32 com-

mands. An intuitive analysis of system information

is supported by formatting the raw trace data ac-

cording to application with the help of the so-called

TRACE32 Protocol API.

However, the size of

the trace memory in

CombiProbe limits the

recording time.

To implement longer

recording intervals,

we offer a PIPE mode

for the CombiProbe.

In PIPE mode, the

trace data is trans-

ferred directly to the

host. In this mode the

trace memory in the

CombiProbe is used

only as a buffer.

On the host, TRACE32

can be confi gured to

write the trace data

immediately to a fi le.

After recording, the

system information

can also be formatted

and analyzed by an

external application.

As an alternative, external analysis software can be

confi gured to collect the trace data over the TRACE32
FDX API and process it while recording (see Fig. 26). 〉〉

Fig. 26: CombiProbe can be confi gured so that external software
can process trace information at recording time.

External
software

S
ys

te
m

 T
ra

ce
 P

o
rt POWER DEBUG

INTERFACE / USB 2
Combi
Probe

HostHost

FDX

www.lauterbach.com 19

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2008

PowerView

PowerDebug

PowerProbe

PowerTrace

Power-
Integrator

Fig. 24: POWER DEBUG INTERFACE / USB 2 with a Combi-
Probe

Fig. 25: ITM commands are used
to confi gure the Instrumentation
Trace Macrocell.
The System Trace commands en-
able recorded trace information to
be displayed and analyzed.

TRACE32-
PowerDebug

Instrumentation
Trace Macrocell

IT
M

co
m

m
an

d
s

S
ys

te
m

Tr
ac

e
co

m
m

an
d

s

CombiProbe &
debug license

Serial Wire Output /
via TPIU (4-bit)

If you would like us to remove your name from our mailing list or receive additional information,
send an e-mail to:

info_us@lauterbach.com

Please inform us:

www.lauterbach.com20

PowerDebug

Power-
Integrator

PowerView

PowerProbe

PowerTrace

NEWS 2008
DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

Summary
The CombiProbe is a new tool option for recording

runtime information in the broad Lauterbach pro-

duct range. For complex test cases, CombiProbe

can also be used in conjunction with TRACE32-

PowerTrace. Since all Lauterbach tools share a

common time base, important system information

can be placed in a direct chronological context with

the program/data fl ow of the core.

3G / DigRF report
From the summer of 2007, Lauterbach has of-
fered a new set of probes for PowerIntegrator,
which allow the recording of data traffi c from a
3G / DigRF interface.
The following sampling rates are used for recording:

• 2 GigaSample /s for the RX / TX lines

• 250 MegaSample /s for the SysClkEnable line

A recording duration between 25.156 ms at full load

and up to several hours is possible, depending on

the data traffi c on the lines. The high sensitivity

of the probes and the very low load of the input

signals guarantee error-free recording.

The measured data can be evaluated and analyzed

at protocol level as well as time-correlated with the

program fl ow.

• Debug cable and 128-MB of trace memory

• JTAG support for ARM cores

 - Standard JTAG

 - Serial Wire Debug Port from ARM

 - cJTAG (IEEE P1149.7), planned

• Standard JTAG possible for other processor

 architectures

• Trace port support for

 - MIPI System Trace

 - ITM over Serial Wire Output

 - ITM over 4-bit CoreSight TPIU

 - 4-Bit ETMv3 in continuous mode,

 planned

• Bandwidth of 200 MBit /s per trace channel

 with up to 4 trace channels

• Voltage range 0.3 V to 3.3 V,

 5 V tolerant

• 34-pin half-size connector to target hardware

• Adapters also for 10- and 20-pin half-size

 connector

CombiProbe data

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed false
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 100
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.48667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 100
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.48667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.49667
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check true
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition (ISO Coated \050Prozess-Standard Offset, gestrichenes Papier, 60 L/cm, ISO 12647-2:2004\051)
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /CHT (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /DAN (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /ESP (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /FRA (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /ITA (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /JPN (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /KOR (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /NLD (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /NOR (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /PTB (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /SUO (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /SVE (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /ENU (DIGIPRINT: Creates PDF for digital printing \(color and monochrome\). Quality: 150/600 dpi, JPEG Medium. Preflight: images below 100/300 dpi generate a warning; job is cancelled if fonts are missing. Increase image resolution for printers with contone capabilities. Attention: can only be used with Distiller 7.x Professional! \(050418/StJ. Use at your own risk. For more information: www.prepress.ch\))
 /DEU <FEFF0044004900470049005000520049004e0054003a002000450072007a00650075006700740020005000440046002d004400610074006500690065006e0020006600fc0072002000640065006e0020004400690067006900740061006c0064007200750063006b002000280046006100720062006500200075006e00640020005300630068007700610072007a007700650069007300730029002e0020005100750061006c0069007400e40074003a0020003100350030002f0036003000300020006400700069002c0020004a0050004500470020004d0069007400740065006c002e0020004200650069002000420069006c006400650072006e00200075006e0074006500720020003100300030002f00330030003000200064007000690020006500720066006f006c00670074002000650069006e00650020005700610072006e0075006e0067003b00200062006500690020006600650068006c0065006e00640065006e002000530063006800720069006600740065006e0020007700690072006400200064006900650020004b006f006e00760065007200740069006500720075006e00670020006100620067006500620072006f006300680065006e002e002000420065006900200044007200750063006b00730079007300740065006d0065006e0020006d00690074002000480061006c00620074006f006e002d00410075007300670061006200650020006700670066002e0020006400690065002000420069006c0064006100750066006c00f600730075006e0067002000650072006800f600680065006e002e002000410063006800740075006e0067003a0020006b0061006e006e0020006e007500720020006d00690074002000440069007300740069006c006c0065007200200037002e0078002000500072006f00660065007300730069006f006e0061006c002000650069006e00670065007300650074007a0074002000770065007200640065006e002100200028003000350030003400310038002f00530074004a002e002000420065006e00750074007a0075006e0067002000610075006600200065006900670065006e0065007300200052006900730069006b006f002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e003a0020007700770077002e00700072006500700072006500730073002e006300680029>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [14400.000 14400.000]
>> setpagedevice

