= Khaled JMAL =
2016 /11 /17

LAUTERBACH /‘
www.lauterbach.com DEVELOPMENT TOOLS

_

The Dalvik Virtual Machine

= Up to version 4.4 KitKat®, Android was Applications
based on the Dalvik Virtual Machine

= Java compiles into DEX code Dalvik VM

= DEX code is compiled just-in-time or
interpreted by the Dalvik VM
iInterpreter

Hardware

Source: ,Dalvik and ART", Jonathan Levin

LAUTERBACH A

Android Debugging Khaled Jmal 2016 /11 /17

_

The TRACE32 Dalvik Awareness

= Written by HAP

= Based on the symbols of the Dalvik VM (libdvm.so)

= Features:
= List VM threads with their class descriptors and names
= Display the VM stack for a single VM thread
= List the Dalvik (Java) source code for each method

= Display the stack frame with Java to native and native to
Java transitions

= Stepping through the DEX code not possible!

LAUTERBACH A

Android Debugging Khaled Jmal 2016 /11 /17

The TRACE32 Dalvik Awareness

= VM threads and thread stack

-

7 B:EXTension.VMList =R ==

magic pid |process/task name method name class descriptor class source |lv]

EFCAL1G60 [D5ED (B system_server -

EFD279ED [062C | com.android. systemus

EFF79040 063E |= oot Landroid/os/Message MessageQueue. | 11

EFDB5400 |063F GC Display detailed | 12

EFCIECCD 0640 signal.Catcher 11

EFCIE420 0641 1DWP 14

EFCIE140 0642 Compiler 12 3

EFCIESED (0643 ReferencequeueD wailt Ljava/lang/Object; |Object.java 10

EFCOCCAD (0644 FinalizerDaemon wait Ljava/lang/0Object; |Object.java 10 (|2

EFCIC400 0645 FinalizerwWatchd wait Lyjava/lang/0Object; |Object.java 10

EFCAC120 (0646 Eindor 1 16

EFCEGGE0 0647 B1 . : — = |52 |

EFCE1620 0649 o @%E..EKT.UMMMUXEFWQU#U . = [=] &3

ERFREDED 078D g1 Imethod name class descriptor class source frmCurPC [frameptr

EFCE1900 [D64A (@ of [next Landroid/os /MessageQueue; MessageQueue. Jjava SECE4D46 [571C0EZE | .

EFEQODA20 0656 |® cf |loop Landroid/os/Looper; Looper. java 5BCE3VSE [571COET4

EFECS50660 D660 (@ of main Landroid/app/ActivityThread; ActivityThread. java |S5BACCFAG (571COEB4

. {n/a) {n/a) {n/a) 00000000 |571COEDS
invokeNative Ljava/lang/ref lect/Method; Method. java 00000006 |571COEEC |
invoke Lyjava/lang/reflect/Method; Method. java S584FBO0OE [571COF20 || =
rumn Lcom/android/internal /os/ZygoteInitiMetho |ZygoteInit. java SEDFDASA |571COF60 ||
main Lcom/android/internal /os/Zygotelnit; ZygoteInit. java S58DFDDES |571C0OF94
{n/a) {n/a) (n?a) Q00000000 (571COFCO
main Ldalvik/system/Nativestart; MativeStart. java 00000000 |571COFD4
{n/a) {n/a) {n/a) 00000000 [5F1COFEC | =
1 [1] | 3

Android Debugging

Khaled Jmal

2016 /11 /17

™y

LAUTERBACH A

The TRACE32 Dalvik Awareness

= JAVA to NATIVE / NATIVE to JAVA transitions

Android Debugging

@ B:Var.Frame /TASK "andreid.process.media” E@

"3 Down args [[llocals [Tl caller Task: "android.process.media” A

—000
-001
-002
-003

—
-004
-005
-006
-007
-008
-009
-010
-011
-012
-013
-014
-015
-016
-017
-018
-019

-020

need_resched() ~
schedule_hrtimeout_range_clock(expires = 0x0, delta = 0, mode = HRTIM
sys_epoll_wait(?, events = OxBEF79530, maxevents = 16, 7)
ret_fast_syscall(asm)

exception

epol |_wait(asm)

android: :Looper: :pollInner (this = 0x5D3B12A0, timeoutMillis = -1)
android: :Looper::pollOnce(this = 0x5D3B12A0, timeoutMillis = -1, outF
ZN7androidL38android_os_MessageQueue_nativePoll0nceEP7_INIEnvPE_jobje
dvmP1atformInvoke(asm)

dvmCallINIMethod(args = Ox412ABE18, pResult = 0x41491A20, 7, self = 0
dvmCheckCallINIMethod(?, pResult = 0x41491A20, method = 0x56F33978, s
JAVA — MNATIVE

next()()

next () ()

Toop() () ,)
main{java. lang.String []1)()

J:DxESE:DxE(bytEEDdeg

invoke(java. lang.Object, java. lang.0Object []1)()

run() () ,

main{java. lang.String []1)()

J:DxESE:DxD(bytEEDdeg

MATIVE —¢ JAVA

t+32_dalvik_wm()

end of frame -

1< i b

m

Khaled Jmal

2016 /11 /17

LAUTERBACH A

The TRACE32 Dalvik Awareness

= DEX code disassembly

P

ﬁ B:Var.Frame /Task "android.process.media:ReferenceQueueD”

Args

[Locals

[caller

JAVA — NATIVE

wait () (
wait ()

pthread_cond_timedwait_relative_np(cond = Ox5CFBCEEE, 7, 7)
waitMonitor (self = 0x5CFECE4&, mon = 0x0,
Dalvik_java_lang_System_currentTimeMillis(?, pResult = 0x40D37F78)

0

run() () |] BulList :0:66E:0

NATIVE —

t32_dalvi | Mstep | M over || Jhext

SE=])

"android, process, media: Referencelususl”

7, nsec = 0, interruptShouldThro

m

=E=])

end of fr

addr/Tine |code

I K

Android Debugging

Khaled Jmal

L_IL_IL_I‘

:066E:
:066E :
!066E:

!066E:
1066E:

124
583A4108
583A410E
583A4110

127
583A4114
583A4118

128

KN

O0DD10F&..
0204
001E0238

0148031C
031D

F Go][11 Break]uyﬂ;fhﬂode] Find:

@verride public void run()

while (isRunning
+invoke-virtual-quick {v4},vtable #0x0
move-resu |t
vOx2 ,0x1E
Reference<?= 1list;

synchronized (ReferenceQueue.class)
const-class v0x3,thing@0x148
monitor-enter

while (ReferenceQueue.unenqueued =~

2016 /11 /17

LAUTERBACH A

_

The Android RunTime (ART)

= Introduced in 4.4 KitKat" (available only through developer
options)

= Supersedes Dalvik since 5.x Lollipop

= Introduces ahead-of-time (AOT) compilation instead of just-in-
time (JIT)

= Android Framework compiled to native code when building
Android

= Apps are compiled at install time

LAUTERBACH A

Android Debugging Khaled Jmal 2016 /11 /17

The Android RunTime (ART)

= ART compiles DEX to native code (OAT files)

= OAT files are ELF files with additional OAT data and
embedded dex files (up to Android 7.0)

-

£ Buylsec (o | 3| 3]
. ress path\section
o |—||—||—| D:00001000--002FAFFF M\base\.rodata -
iaij Brd 0 o | B8 P:002FB000--005411C7 \\base\. text
address 0 4 8 C 0123456789ABCDEF | D:00542000--00581D5F \\base\.bss
75D:00000000 »464C457F 03010102 00000000 00000000 FELF: Ry o nn oy D:00582000--0058203C \\base\.dynstr
z5D:00000010 | 00870003 00000001 00000000 00000000 S%ELELVMNLLLILY (= D:00582040--005820CF \\base\.dynsym
75D:00000020 | 00000040 00000000 00544040 00000000 @XANNNNE@ETINNAY, 15 D:005820D0--005820F3 \\base\.hash
75D:00000030 |[| |p:00583000--0058306F \\base\.dynamic ~
75D - 00000040 || % B:Data.dump D:0x1000 o | = ||_§3@ < [m] ol
Z5D:00000050 address 0 4 8 C 01234567 89ABCDEF
Z5D:00000060 || "Zsp:00001000 P0A74616F 00393730 D3187886 00000002 0ath:0/ 9 axsLT UL -
Z5D:00000070 || | zsp:00001010 | 00000003 00000001 002FAQ00 00000000 5NN ENTLILA /MUY, =
ggg:gggggggg zsn:ggggiggg gggggggg gggggggg 00000000 00000000 SANNANNNNNANNNNN =
: Z5D:
z5D:000000A0 || | 7z5p:00001040 | 711E2000 000004p3 | #i [B:Data.dump D:0x1000] E=REcH %"
Z5D:00000080 || | zsD:00001050 | 63000068 69706D6F SRR 0 4 8 C 01234567 89ABCDEF
Z5D:000000C0 || | z5D:00001060 | 73007265 64656570 | "755:000014E0 | 2E656863 70747468 67656C2E 2E796361 che. http. Tegacy. =
= L Z5D:00001070 | 00656¢62 65757274 ||| zSD:000014F0 | 746F6F62 7472612E 74616E00 2D657669 boot.artinative- (=
Z5D:00001080 | 646D632D 656E696C || zsD:00001500 | 75626564 62616767 6600656C 65736C61 debuggablelfalse =
Z5D:00001090 | 20373064 697A2D2D | | zsp:00001510 | 63697000 6C616600 08006573 62000000 "picLfalse BN b ~
Z5D:000010A0 | 623D6EGF 2E657361 | | zsp:00001520 | 2657361 BO6B7061 3880864D 5C000005 ase.apk®BMIL8ENNN .
Z5D:00001080 | 64662074 2D20383D | | zsp:00001530 | 5Cc002401 000023cl 0A786564 00353330 a$L\a#wndex$O35n
Z5D:000010C0 | 6F697461 642F3D6E | | zsD:00001540 | 2457283C 03F7F2D2 4747F0A9 4EADEGOE <(WSLHREAGLGGEEHN
Z5D:000010D0 | 6C646D76 36353131 || zsp:00001550 | 6DC73032 9008939 00238C24 00000070 205m%%5%5 5 #Lpy =
< ZsD:00001560 | 12345678 00000000 00000000 00062C54 xVASYNNMAMNNT AN
zsD:00001570 | 000040FD 00000070 0000084A 00010464 aﬂwwgﬂﬂwj%wwd%zw
zsn:oooolssoJ 00000889 0001258C 00001BC2 0001B238 SYMMI%LNGENN85LY, ~
4 }

Android Debugging

Khaled Jmal

2016 /11 /17

LAUTERBACH

_

The Android RunTime (ART)

= OAT files can also be compiled with DWARF debug info

= DWAREF info can be enabled for apps before installation with
$ adb shell setprop debug.generate-debug-info true

= Most debug info can also be extracted from the OAT data
— new TRACE32 command: Data.LOAD.OAT

= Autoloader first tries to load the OAT file as ELF using
Data.LOAD.ELF

= |If no debug info is found then the Autoloader loads the files
using Data.LOAD.OAT

LAUTERBACH A

Android Debugging Khaled Jmal 2016 /11 /17

_

The Android RunTime (ART) - Demo

= RAM Dump from the Hikey board (ARM Cortex-A53) Loaded
on the Simulator

= Android 6.0 Marshmallow

LAUTERBACH A

Android Debugging Khaled Jmal 2016 /11 /17

The Android RunTime (ART) - Demo

= Stack frame for the current task (sieve app) before loading the
symbols. The app code has been compiled to base.odex and
Android framework to boot-framework.oat. Both files are OAT

files.

& B:f /mod

(= @]

Down

[¥] Args [JLocals [] caller Task:

-000
-001
-002
-003
-004
-005
-006
-007
-008
-009
-010
-011
-012

NUX:
NUX:
NUX:
NUX:
NUX:
NUX:
NUX:
NUX:
NUX:
NUX:
NUX:
NUX:
NUX:

end

OxAAF :
OxAAF :
OxAAF :
OxAAF :
OxAAF :
OxAAF :
OxAAF :
OxAAF :
OxAAF :
OxAAF :
OxAAF :
OxAAF :
OxAAF :

0x73F51394(asm) @boot-framework.
0x735D680C (asm) @boot-framework.
0x735D8228(asm) @boot-framework.
0x735D830C(asm) @boot-framework.
0x735D7518(asm) @boot-framework.
0x743721DC(asm) @boot-framework.

0x7FAL1018E4C (asm)
O0x7FB3EB3938(asm)
O0x7FB3ECO54C(asm)
0x7FB420769C (asm)
0x7FB42089A4 (asm)
Ox7FB4227C78(asm)
Ox7/FB76C3F44 (asm)

of frame

@base.odex
@libart.so
@libart.so
@libart.so
@libart.so
@libart.so
@libc.so

oat
oat
oat
oat
oat
oat

1 —

Android Debugging Khaled Jmal 2016 /11 /17

LAUTERBACH A

The Android RunTime (ART) - Demo

= The symbol autoloader load base.odex as ELF/DWAREF since
it contains DWARF info and boot-framework.oat as OAT.

(= &

[¥] Args [JLocals [] caller Task: -

& B:f /mod

-000 Jlandroid.
-001 ||android.
-002 |landroid.
-003 ||jandroid.
-004 |android.
-005 J|android.
-006

-007

-008

-009

-010

4

0S.
0S.
0S.
0S.
0S.
view.View.post(java::lang: :Runnable) (?7) @boot-framework.oat

void com.lauterbach. 1btest2.MainActivity$sieveThread. run() (this = ()) @base.odex
NUX: OxAAF : 0x/FB3EB3938(asm) @libart.so

NUX: OxAAF : 0x/FB3EC0594 (asm) @libart.so

art::Trace: :DumpMethodList(this = 0x0, 7, 7) @libart.so
art::verifier::Methodverifier: :verifyPrimitivePut() @libart.so

end of frame

MessageQueue. enqueueMessage (android: tos: :Message, long) (Y, 7) @boot-framework.oa .
Handler. enqueueMessage(android: :0s: :MessageQueue,android: :05: :Message, long) (7,
Handler.sendMessageAtTime(android: :0s::Message, long) (7, 7) @boot-framework.oat
Handler.sendMessageDelayed(android: :0s: :Message, long) (7, 7) @boot-framework.oat
Handler.post(java::lang: :Runnable) (?) @boot-framework.oat (}

Android Debugging

Khaled Jmal

LAUTERBACH A

2016 /11 /17

The Android RunTime (ART) - Demo

= [B=N (== | <
| bistep || m over | Abiverge| ¢#'Return|[Sup || PpGo | M Break || ¥Mode |[6][¢.]["3]| Find: MainActivity.java
addr/line |source
@ 36 private class SieveThread extends Thread {
private static final int sSIZE = 10000;
38 private final boolean flags[] = new boolean[SIZE];
private boolean mContinueFlag;
40 public int mCount = 0;
@override
public void run() {
@ 44 this.setName("SieveThread”);
45 mContinueFlag = true; .
@ 46 while (mContinueFlag) { T
47 test();
48 mCount++;
49 mPrimeCounter.post(
50 new Runnable() {
public void run() {
@ 52 mPrimeCounter.setText("" + mCount);
53 1
& B:f /mod = || E= || &3
57 1 J [t. Up] ["1 Down] [] Args [JLocals [] caller Task: -
-006 [void com.lauterbach. Tbtest2.MainActivity$sieveThread. run() (this = ()) @base.odex .
publ1d |-007 |NUX:0xAAF :0x/FB3EB3938(asm) @libart.so
4| -008 |NUX:0xAAF:0x/FB3EC0594(asm) @libart.so E|
-009 J|art::Trace::DumpMethodList(this = 0x0, 7, 7) @libart.so =

Android Debugging

—— |end of frame
4

-010 J|art::verifier::Methodverifier::vVerifyPrimitivePut() @libart.so

Khaled Jmal 2016 /11 /17

LAUTERBACH A

The Android RunTime (ART) - Demo

= [Bx1] = || B B3
[bl Step][¥ Over ” B.Diverge][+ Return ” < up][b Go ” 1l Break][¥ Mode]E Find:
addr/1ine |source (

NUX:0AAF :735D74BC 00000000 undef 0x0 -

NUX:0AAF :735D74C0 00000084 undef 0Ox84

NUX:0AAF:735D74c4 [D1400BF0 android.os.Handler.post(java::lang::Runnable): sub x16,s5P,#0x2,1s1 #0x0C

NUX:0AAF:735D74C8 |E940021F 1dr wZR, [x16]

NUX:0AAF :735D74CC |FE1BOFEOD str x0, [sP,#-0x50]!

NUX:0AAF :735D74D0 |a90357F4 stp x20,x21, [sP,#0x30]

NUX:0AAF:735D74D4 |a9047BFG stp x22,%x30, [sP,#0x40]

NUX:gAAF:;%5D74D8 79400270 1drh wlt, [x19]

NUX : UAAF :

NUX: 0AAF : 735 & Buf /mod E@

:Hﬁgﬁg;% [t.up | [3 Down| [V]Args [|locals [|caller Task: -

NUX:0AAF:739 |-004 |android.os.Handler.post(java::lang: :Runnable) (¥) @boot-framework.oat - =

NUX:0AAF:739 |-005 |android.view.View.post(java::lang::Runnable) (?) @boot-framework.oat

NUX:0AAF:735 |-006 |void com.lauterbach.lbtest2.MainActivity$sieveThread. run() (this = () @base-odex|;1

NUX:0AAF : 739 |-007 [NUX:0xAAF:0x/FB3EB3938(asm) @libart.so —

NUX:0AAF : 739 |-008 [NUX:0xAAF:0x/FB3EC0594(asm) @libart.so

NUX:0AAF:739 |-009 |art::Trace::DumpMethodList(this = 0x0, 7, 7) @libart.so %

NUX:0AAF:73 4 b

NUX:0AAF:73

NUX:0AAF :735D750C |[FO941ECOO Tdr x0, [x0,#0x3D8]

NUX:0AAF:735D7510 |FO940181E 1dr x30, [x0,#0x30]

NUX:0AAF:735D7514 |D63F03C0 blr x30

0 0 943574 ldp x20,x21, [SP,#0x30])

AQ447BF6 Tdp x22,%x30, [5P,#0x40] i
< | 1] | B

Android Debugging

Khaled Jmal 2016 /11 /17

LAUTERBACH A

_

ART and Hybrid Compilation

= Android 7 (Nougat) introduces JIT/AOT hybrid compilation
= The Android Framework is still compiled ahead-of-time
= Apps are per default not compiled at install time:

= An interpreter initially runs all the byte code and profiles
often-executed methods (,hot")

= ,hot® methods are compiled by the JIT compiler into native
executable code which stored in the JIT cache along with
the collected profile information

= When the device is unused and charging for over long
duration, a service will compile the hot methods and save
the generated code

LAUTERBACH A

Android Debugging Khaled Jmal 2016 /11 /17

ART and Hybrid Compilation

WorkFlow

tﬂ' e
compilation CEChE
(Profiles)

First Install
Mo compilation

Application ki . : o
Is method
compiled?

Creates
Profile
File

Source: Android: The Road to JIT/AOT Hybrid Compilation-Based Application User Experience By Rahul K. (Intel),
Jean Christophe Beyler (Intel), Paul H. (Intel)

LAUTERBACH A

Android Debugging Khaled Jmal 2016 /11 /17

_

ART and Hybrid Compilation

= JIT can be disabled with following commands:

$ adb shell stop
$ adb shell setprop dalvik.vm.usejit false

S adb shell start

= Ahead-Of-Time compilation for apps can be enabled using the
following setup before installation:

S adb shell setprop pm.dexopt.install everything

LAUTERBACH A

Android Debugging Khaled Jmal 2016 /11 /17

_

ART and Hybrid Compilation - Demo

= Android 7.0
= RAM dumps from the Android Emulator (QEMU)
= Disabled JIT

& C

1652371

CCCCCC

: 00 A 2 BOCO &

LAUTERBACH A

Android Debugging Khaled Jmal 2016 /11 /17

Android 7.0 — Enabled JIT

= TRACES32 can display the stack frame with the Java to native
and native to Java transitions.

& B:f /mod

[&@]e=]

t. Up Dowin Args [JLocals

[caller Task:

-000]||lsieve(int,boolean,char)() @base.odex |

— |INATIVE —» JAVA

-004 [setI(inline)

JAVA —» NATIVE

-006 |MterpInvokeDirect(?,

-007 ||{test() () @base.odex |

NATIVE — JAVA

-010 [setdI(inline)

JAVA —» NATTWVE

-012 |MterpInvokeDirect(?,

—aigLrun()() @base.odex

-001||artMterpAsmInstructionstart(asm) @libart.so
-002||artMterpAsmInstructionstart(asm) @libart.so
-003||art::interpreter: :Execute() @libart.so

-004 |art::interpreter: :ArtInterpreterToInterpreterBridge() @libart.so
-005 |art::interpreter::DoCall«false, false=() @libart.so
shadow_frame = 0x00000073387FE9CO, dex_pc_ptr

-008 |artMterpAsmInstructionstart(asm) @libart.so
-009 |art::interpreter::Execute() @libart.so

-010 |art::interpreter: :ArtInterpreterToInterpreterBridge() @libart.so
-011 |art::interpreter::DoCall<false, false=() @libart.so
shadow_frame = 0x00000073387FEC80, dex_pc_ptr

-014 |artMterpAsmInstructionstart(asm) @libart.so
-015 [art::interpreter::Execute() @libart.so

-016 [artQuickToInterpreterBridge() @libart.so

-017 |art_quick_to_interpreter_bridge(asm) @libart.so

0x0000007338BOEE2C, inst_

11

0x0000007338BOEESC, inst_

<

I

Android Debugging Khaled Jmal

2016 /11 /17

LAUTERBACH A

Android 7.0 — Enabled JIT

= TRACES32 can display the stack frame with the Java to native
and native to Java transitions.

& B:f /mod

[&@]e=]

t. Up Dowin Args [JLocals

[caller Task:

-000]||lsieve(int,boolean,char)() @base.odex |

— |INATIVE —» JAVA

-004 [setI(inline)

JAVA —» NATIVE

-006 |MterpInvokeDirect(?,

-007 ||{test() () @base.odex |

NATIVE — JAVA

-010 [setdI(inline)

JAVA —» NATTWVE

-012 |MterpInvokeDirect(?,

—aigLrun()() @base.odex

-001||artMterpAsmInstructionstart(asm) @libart.so
-002||artMterpAsmInstructionstart(asm) @libart.so
-003||art::interpreter: :Execute() @libart.so

-004 |art::interpreter: :ArtInterpreterToInterpreterBridge() @libart.so
-005 |art::interpreter::DoCall«false, false=() @libart.so
shadow_frame = 0x00000073387FE9CO, dex_pc_ptr

-008 |artMterpAsmInstructionstart(asm) @libart.so
-009 |art::interpreter::Execute() @libart.so

-010 |art::interpreter: :ArtInterpreterToInterpreterBridge() @libart.so
-011 |art::interpreter::DoCall<false, false=() @libart.so
shadow_frame = 0x00000073387FEC80, dex_pc_ptr

-014 |artMterpAsmInstructionstart(asm) @libart.so
-015 [art::interpreter::Execute() @libart.so

-016 [artQuickToInterpreterBridge() @libart.so

-017 |art_quick_to_interpreter_bridge(asm) @libart.so

0x0000007338BOEE2C, inst_

11

0x0000007338BOEESC, inst_

<

I

Android Debugging Khaled Jmal

2016 /11 /17

LAUTERBACH A

_

ART and Hybrid Compilation - Demo

= Android 7.1
= RAM dumps from HiKey board
= Enabled JIT

LAUTERBACH A

Android Debugging Khaled Jmal 2016 /11 /17

Android 7.1 — Enabled JIT

* Frame window shows that the application is executing in the
dalvik jit code cache.

Android Debugging

& B:f /mod (o [@ =]
Dowin [] Args [JLocals [] caller Task: -

-000 |INUX:0xAD8:0x98DF9480(asm) @dev/ashmem/dalvik-jit-code-cache -
-001 ||NUX:0xADS8:0x98DFAOBC(asm) @dev/ashmem/dalvik-jit-code-cache

-002 ||INUX:0xAD8:0x98DFA170(asm) @dev/ashmem/dalvik-jit-code-cache

-003 |lart_quick_invoke_stub(asm) @libart.so

-004 l|art::ArtMethod: :Invoke() @libart.so

-005 |art::InvokewithArgArray() @libart.so

-006 |art::InvokevVirtualOrInterfacewithlvalues() @libart.so =
-007 l|art::Thread: :CreateCallback() @libart.so

-008 |_pthread_start(arg = 0x0000007FA998B8450) @libc.so

-009 |__start_thread(fn = 0x0000007FB53F5738, arg = 0x0000007FA998B450) @libc.so

end of frame

Khaled Jmal 2016 /11 /17

LAUTERBACH A

Android 7.1 — Enabled JIT

= Android ART Awareness can get the name of the methods
corresponding to the jit code cache addresses (work in
progress)

é&f Buf /mod El@

Down [] Args [Jrocals [] caller Task: -

-000 [jcom. Tauterbach. Tbtest2.MainActivity$sieveThread.sieve(int,boolean,char) () @dev/ashmem/dalvik-jit-code-cache .
-001 |com.Tauterbach.TbtestE.MainActivity$SieveThread.test()() @dev/ashmem/dalvik-jit-code-cache

-002 ||com.lauterbach. Ibtest2.MainActivity$sieveThread. run() () @dev/ashmem/dalvik-jit-code-cache

-003 ||lart_qguick_invoke_stub(asm) @libart.so

-004 l|art::ArtMethod: :Invoke() @libart.so

-005 |art::InvokewithArgArray() @libart.so

-006 |art::InvokeVirtualOrInterfacewithlvalues() @libart.so =
-007 l|art::Thread: :CreateCallback() @libart.so

-008 |_pthread_start(arg = 0x0000007FA998B450) @libc.so

-009 |_start_thread(fn = 0x0000007FB53F5738, arg = 0x0000007FA998B450) @libc.so

end of frame

Android Debugging Khaled Jmal 2016 /11 /17

LAUTERBACH A

= Khaled JMAL =
2016 /11 /17

Questions?

LA UTERBACH/A
www.lauterbach com DEVELOPMENT TOOLS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

