
www.lauterbach.com

 ▪ Khaled JMAL ▪
 2016 / 11 / 17

Android Debugging
ART

www.lauterbach.com

 ▪ 2 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The Dalvik Virtual Machine

 Up to version 4.4 „KitKat“, Android was
based on the Dalvik Virtual Machine

 Java compiles into DEX code

 DEX code is compiled just-in-time or
interpreted by the Dalvik VM
interpreter

Source: „Dalvik and ART“, Jonathan Levin

www.lauterbach.com

 ▪ 3 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The TRACE32 Dalvik Awareness

 Written by HAP

 Based on the symbols of the Dalvik VM (libdvm.so)

 Features:

■ List VM threads with their class descriptors and names

■ Display the VM stack for a single VM thread

■ List the Dalvik (Java) source code for each method

■ Display the stack frame with Java to native and native to
Java transitions

■ Stepping through the DEX code not possible!

www.lauterbach.com

 ▪ 4 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The TRACE32 Dalvik Awareness

■ VM threads and thread stack

www.lauterbach.com

 ▪ 5 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The TRACE32 Dalvik Awareness

■ JAVA to NATIVE / NATIVE to JAVA transitions

www.lauterbach.com

 ▪ 6 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The TRACE32 Dalvik Awareness

■ DEX code disassembly

www.lauterbach.com

 ▪ 7 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The Android RunTime (ART)

 Introduced in 4.4 „KitKat“ (available only through developer
options)

 Supersedes Dalvik since 5.x Lollipop

 Introduces ahead-of-time (AOT) compilation instead of just-in-
time (JIT)

■ Android Framework compiled to native code when building
Android

■ Apps are compiled at install time

www.lauterbach.com

 ▪ 8 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The Android RunTime (ART)

 ART compiles DEX to native code (OAT files)

 OAT files are ELF files with additional OAT data and
embedded dex files (up to Android 7.0)

www.lauterbach.com

 ▪ 9 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The Android RunTime (ART)

 OAT files can also be compiled with DWARF debug info

 DWARF info can be enabled for apps before installation with

 Most debug info can also be extracted from the OAT data

→ new TRACE32 command: Data.LOAD.OAT

 Autoloader first tries to load the OAT file as ELF using
Data.LOAD.ELF

 If no debug info is found then the Autoloader loads the files
using Data.LOAD.OAT

$ adb shell setprop debug.generate-debug-info true

www.lauterbach.com

 ▪ 10 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The Android RunTime (ART) - Demo

 RAM Dump from the Hikey board (ARM Cortex-A53) Loaded
on the Simulator

 Android 6.0 Marshmallow

www.lauterbach.com

 ▪ 11 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The Android RunTime (ART) - Demo

 Stack frame for the current task (sieve app) before loading the
symbols. The app code has been compiled to base.odex and
Android framework to boot-framework.oat. Both files are OAT
files.

www.lauterbach.com

 ▪ 12 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The Android RunTime (ART) - Demo

 The symbol autoloader load base.odex as ELF/DWARF since
it contains DWARF info and boot-framework.oat as OAT.

www.lauterbach.com

 ▪ 13 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The Android RunTime (ART) - Demo

www.lauterbach.com

 ▪ 14 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

The Android RunTime (ART) - Demo

www.lauterbach.com

 ▪ 15 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

ART and Hybrid Compilation

 Android 7 (Nougat) introduces JIT/AOT hybrid compilation

 The Android Framework is still compiled ahead-of-time

 Apps are per default not compiled at install time:

■ An interpreter initially runs all the byte code and profiles
often-executed methods („hot“)

■ „hot“ methods are compiled by the JIT compiler into native
executable code which stored in the JIT cache along with
the collected profile information

■ When the device is unused and charging for over long
duration, a service will compile the hot methods and save
the generated code

www.lauterbach.com

 ▪ 16 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

ART and Hybrid Compilation

Source: Android: The Road to JIT/AOT Hybrid Compilation-Based Application User Experience By Rahul K. (Intel),
Jean Christophe Beyler (Intel), Paul H. (Intel)

www.lauterbach.com

 ▪ 17 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

ART and Hybrid Compilation

 JIT can be disabled with following commands:

 Ahead-Of-Time compilation for apps can be enabled using the
following setup before installation:

$ adb shell stop

$ adb shell setprop dalvik.vm.usejit false

$ adb shell start

$ adb shell setprop pm.dexopt.install everything

www.lauterbach.com

 ▪ 18 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

 Android 7.0

 RAM dumps from the Android Emulator (QEMU)

 Disabled JIT

ART and Hybrid Compilation - Demo

www.lauterbach.com

 ▪ 19 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

 TRACE32 can display the stack frame with the Java to native
and native to Java transitions.

Android 7.0 – Enabled JIT

www.lauterbach.com

 ▪ 20 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

 TRACE32 can display the stack frame with the Java to native
and native to Java transitions.

Android 7.0 – Enabled JIT

www.lauterbach.com

 ▪ 21 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

 Android 7.1

 RAM dumps from HiKey board

 Enabled JIT

ART and Hybrid Compilation - Demo

www.lauterbach.com

 ▪ 22 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

 Frame window shows that the application is executing in the
dalvik jit code cache.

Android 7.1 – Enabled JIT

www.lauterbach.com

 ▪ 23 / 24 ▪

Android Debugging ▪ Khaled Jmal ▪ 2016 / 11 / 17

 Android ART Awareness can get the name of the methods
corresponding to the jit code cache addresses (work in
progress)

Android 7.1 – Enabled JIT

www.lauterbach.com

 ▪ Khaled JMAL ▪
 2016 / 11 / 17

Questions?

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

