
www.lauterbach.com 1

Hypervisor Debugging

In April 2017, Lauterbach will provide the high per-
formance capabilities of its new hypervisor support.
This article presents a reference implementation on
which a Xen hypervisor with two Linux guests is run-
ning on a HiKey board from LeMaker (Cortex-A53).

Virtualization in Embedded Systems

The virtualization concept allows multiple operating
systems to be run in parallel on a single hardware
platform. Currently, virtualization is being used more
and more in embedded systems. For example, in
the cockpit of a car, real-time applications that are
monitored by an AUTOSAR operating system run on
the same hardware platform parallel to Android based
user interfaces. A hypervisor, which is the core of
virtualization, ensures that everything works reliably
and efficiently.

The hypervisor, which is also referred to as a virtual
machine monitor, is a software layer fulfilling two tasks:

1.	Starting and managing the virtual machines (VMs).
2.	Virtualizing the physical hardware resources for

the VMs.

An operating system running on a VM is referred to as
a guest OS. All accesses by the guests to the virtua-
lized hardware resources are mapped to the physical
resources by the hypervisor.

CPU virtualization is important for debugging. Every
virtual machine is assigned one or more virtual CPUs
(vCPUs). The number of vCPUs does not necessarily
have to be the same as the number of CPU cores avai-
lable on the hardware platform.

Memory virtualization is equally important. The VMs
do not see the actual physical memory but see the
guest physical memory as virtualized memory. The hy-
pervisor manages a separate page table for each VM
to control access to physical memory. Since the appli-
cation processes, at least on operating systems like
Linux, work with virtual addresses anyway, the debug-
ger has to deal with a two stage address translation:

•	 Guest virtual memory to guest physical memory
•	 Guest physical memory to host physical memory

See the diagram “Virtual Memory in 2 Stages” on the
opposite page:

•	The Stage 1 MMUs mapping information is handled
by the page table of their guest OS.

•	The Stage 2 MMU uses the page tables of the
hypervisor.

Extended Debugging Concepts

TRACE32 was systematically extended in 2016
by Lauterbach to provide its customers unlimited

Hypervisor Layering

Host Machine

Hypervisor

Cores I/OMemory

Process A Process B

Guest OS 1

Virtual Machine 1

Process C Process D

Guest OS 2

Virtual Machine 2

www.lauterbach.com 2

debugging capability with a hypervisor. The following
extensions were added:

•	 A machine ID was added to the TRACE32 com-
mand syntax. The machine ID allows the debugger
to access the context of the active VM as well as
the context of all inactive VMs. A virtual machine is
considered active when a core has been allocated to
it for execution.

•	 Using the new hypervisor-awareness, the debugger
detects and visualizes the VMs of the hypervisor.

•	 Instead of only being able to debug a single ope-
rating system, it is now possible to debug several
operating systems at the same time.

•	 Instead of only being able to access the OS page ta-
bles of the active guests as before, the debugger can
now also use the page tables of all inactive guests.

The most important objective for all extensions was
seamless debugging of the overall system. This me-
ans that when the system has stopped at a breakpoint,
you can check and change the current state of every
single process, all VMs, plus the current state of the
hypervisor and of the real hardware platform. In addi-
tion, you can set a program breakpoint at any location
in the code.

The unlimited debugging capability that Lauterbach
has been offering for almost 20 years now, for opera-
ting systems like Linux, formed the starting point for
all of these implemented extensions. Therefore, what

follows is a brief summary of the most important OS
debugging concepts:

Processes run on operating systems in a private virtual
address space. The TRACE32 OS-awareness and the
TRACE32 MMU support allow users to debug seam-
lessly across process boundaries:

•	 With the help of the space ID, it is possible to directly
access the virtual address space of each process.

•	 With the help of the TASK option, it is possible to
display the current register set and the stack frame
for every single process.

Machine ID

How does this concept need to be extended if the ope-
rating systems are running on virtual machines?

1.	 First, it is necessary to uniquely identify each virtual
machine. For this purpose, TRACE32 assigns each
VM a number, the machine ID. The machine ID of
the hypervisor is 0. Just as the space ID is used to
identify the virtual address space of a process, the
machine ID is used to identify the private address
space of a VM.

2.	To show the register set and the stack frame of any
process, the debugger must know on which VM
and on which guest OS the process is running. The
MACHINE option was introduced for this purpose.

Virtual Memory in 2 Stages

Stage 2 MMU

Guest 1
Virtual
Memory

Guest 2
Virtual
Memory

Guest 1
Physical
Memory

Guest 2
Physical
Memory

Stage 1 MMUStage 1 MMU

Host
Physical
Memory

www.lauterbach.com 3

Hypervisor
•	 Load debug symbols
•	 Set up page table awareness (MMU)
•	 Load Hypervisor awareness

Guest OS 1
•	 Load debug symbols
•	 Set up page table awareness (MMU)
•	 Load OS awareness

Guest OS 2
•	 Load debug symbols
•	 Set up page table awareness (MMU)
•	 Load OS awareness

Guest OS 3

Guest OS 4

Guest OS 5

Debugger Configuration

These two extensions are sufficient to allow the de-
bugger to access all information across process
boundaries. The “TRACE32 Commands” overview
above provides a comparison of the extended TRA-
CE32 command syntax for hypervisor debugging to
the traditional syntax used for OS-aware debugging.

Hypervisor Awareness

Like the OS-awareness functionality, there is now a
hypervisor-awareness functionality. This functionali-
ty provides the debugger with all information on the
hypervisor running on the hardware platform. Howe-
ver, hypervisor-awareness requires the debug symbols
for the hypervisor to be loaded. The debugger can
then create an overview of all guests. The “Guest List”
screenshot for our reference implementation — Xen,
Cortex-A53 — shows the following information:

•	 VM IDs and VM states, number of vCPUs per VM
•	 Start addresses of the stage 2 page tables (vttb)

The awareness for the particular hypervisor is created
by Lauterbach and provided to its customers. An
overview of all currently supported hypervisors is
shown in the table “Currently Supported Hypervisors”
on page 4.

Debugger Configuration

How do the extended debug concepts effect debug-
ging with TRACE32 now? Let‘s first look at the configu-
ration. The following steps are necessary to configure
the hypervisor as well as every single guest OS:

1.	 Load the debug symbols
2.	Set up page table awareness (MMU)
3.	Load the TRACE32 hypervisor-awareness

respectively the TRACE32 OS-awareness

Guest List

Data.dump	 <space _ id>:<virtual _ address>
Data.LOAD.Elf <file>	 <space _ id>:<virtual _ address>
Register.view	 /TASK <process _ name>
Frame.view	 /TASK <process _ name>

TRACE32 Commands

Traditional
OS-Aware
Debugging

Data.dump	 <machine _ id>:::<space _ id>::<virtual _ address>
Data.LOAD.Elf <file>	 <machine _ id>:::<space _ id>::<virtual _ address>
Register.view	 /MACHINE <machine _ id> /TASK <process _ name>
Frame.view	 /MACHINE <machine _ id> /TASK <process _ name>

Hypervisor
Debugging

< NEW >

Lauterbach GmbH • Altlaufstraße 40 • D-85635 Höhenkirchen-Siegertsbrunn •  +49 8102 9876-0 • info@lauterbach.com

The “Debugger Configuration” diagram shows an over-
view of the individual configuration steps.

Debug Process

The operation of a debugger must often resolve cont-
radicting requirements. One user group wants simple
and intuitive operation while another group demands
maximum flexibility and full scripting capabilities. Let‘s
first take a look at the intuitive operation. The basic
idea is actually very simple: if the debugger stops at
a breakpoint, then the GUI visualizes the application
process that triggered the breakpoint.

If you are interested in a different application process,
then you simply open the TRACE32 global task list. All
tasks executing on the overall system are listed there.
You can select the task you want to display in the GUI
by double-clicking on the task. The global task list also
offers a simple way to set program breakpoints for a
specific task. Since the debug symbols are associated
with a machine ID and a space ID when the .elf file is

loaded, functions and variables can be addressed by
name as per usual when debugging.

Maximum flexibility and full scripting capabilities can
be obtained using the TRACE32 commands. The ex-
tended syntax for these commands are presented
above.

Summary

Since Lauterbach has systematically extended the well-
known concepts for OS-aware debugging to hypervi-
sor debugging, it will be easy for TRACE32 users to get
started with just a little practice.

KVM

VxWorks 653 3.x

Wind River Hypervisor 2.x

Xen

Currently Supported Hypervisors

( more to follow )

Xen Hypervisor on Cortex-A53

Global Task List Virtual Machine List

4

