
MANUAL

Application Note Profiling on
AUTOSAR CP with ARTI

Application Note Profiling on AUTOSAR CP with ARTI

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Trace Application Notes ... 

 Trace Analysis .. 

 Application Note Profiling on AUTOSAR CP with ARTI .. 1

 History ... 4

 About this manual .. 5

 Introduction .. 5

 Related Documentation ... 6

 Using ARTI Hooks .. 7

 Hook Macros 7

 OS Hooks 7

 RTE Hooks 7

 Instrumentation 8

 Trace Methods 9

 Data Trace 9

 TriCore Bus Trace 10

 TRACE32 LOGGER Trace 10

 TRACE32 FDX Trace 11

 Vendor Specifics 12

 Object Detection 13

 Timing Parameters ... 14

 Overview of TRACE32 Command Structure .. 16

 TASK.ARTI 16

 TASK.ORTI 16

 TASK.List 17

 Trace.List 18

 Trace.Chart 18

 Trace.ProfileChart 19

 Trace.STATistic 19

 Trace.PROfileSTATistic 20

 DURation Analysis 20

 DIStance Analysis 21
Application Note Profiling on AUTOSAR CP with ARTI | 2©1989-2023 Lauterbach

 SMP Options 21

 GROUP 22

 BMC 23

 Trace.EXPORT 23

 Task Runtime Analysis .. 24

 Trace.Chart.TASKState 25

 Trace.STATistic.TASKState 26

 Trace.STATistic.TASKStateDURation 27

 Runnable Runtime Analysis .. 28

 Trace.Chart.Runnable 28

 Trace.STATistic.RUNNABLE 29

 Trace.STATistic.RUNNABLEDURation <runnablestart> 29

 ISR2 Runtime Analysis .. 30

 Trace.Chart.TASKINTR 30

 Trace.STATistic.TASKINTR 31

 Trace.Chart.TASKORINTRState 31

 Trace.STATistic.TASKORINTRState 31

 Interrupt Runtime Analysis ... 32

 Spinlock Analysis ... 33

 CPU Load Measurement .. 34

 Grouping the Idle Tasks 34

 CPU Load Overview 35

 CPU Load in Time Slots 35

 CPU Load by Benchmark Counters 36

 Jitter Measurement .. 37

 Jitter on Tasks 37

 Jitter on Runnables 38

 Export .. 40

 CSV Export 40

 Trace.EXPORT.TASKEVENTS (deprecated) 40

 Trace.EXPORT.ARTI 40

 Trace.EXPORT.MDF 41

 TIMEX .. 43
Application Note Profiling on AUTOSAR CP with ARTI | 3©1989-2023 Lauterbach

Application Note Profiling on AUTOSAR CP with ARTI

Version 14-Aug-2023

History

01-Aug-2023 PowerDebug E40/PRO/X50 and AUTO26 Debug Cable added as second configuration for
TriCore DAP Streaming.

05-Jul-2023 Initial version of the manual.
Application Note Profiling on AUTOSAR CP with ARTI | 4©1989-2023 Lauterbach

About this manual

This document provides information about using TRACE32 for performance analysis on systems based on
the AUTOSAR Classic Platform.

Introduction

Starting with release R20-11, AUTOSAR includes the so-called “AUTOSAR Run-Time Interface” (ARTI),
which is intended for debugging and tracing applications and the OS of the Classic Platform. It basically
includes a description of the implemented OS and a hook interface for instrumented tracing.
For detailed information, please refer to the AUTOSAR specifications (see “Related Documentation”,
page 6).

The OS description of ARTI is created in ARXML and is meant to be a successor of the “OSEK Run-Time
Interface” (ORTI) description. As of today (July 2023), no commercial AUTOSAR stack provider supports
the creation of the ARTI description yet, however TRACE32 already supports the import of the ARTI ARXML
file. The ARTI features described in this document still rely on the available ORTI description, with some side
notes on the upcoming ARTI description.

ARTI defined a new interface to trace events based on instrumented hooks. This was not available for ORTI
profiling, which relies completely on hardware based data trace capabilities. Using instrumented hooks
overcomes several limitations that a data trace has. The hook based interface allows to:

• trace all cores, even if there is a hardware limitation (e.g. TriCore MCDS, which only allows
tracing for n cores out of r (n <= r))

• trace complex events that would overload the trace port (e.g. task states)

• trace specific AUTOSAR artifacts (e.g. runnables)

• trace only events of interest, increasing the trace depth drastically and allowing medium speed
trace tools such as TRACE32 CombiProbe

• accomplish a pure software trace, if no hardware trace is available at all

This manual will show you how to instrument your software to use ARTI profiling on various trace methods,
as well as the evaluation and analysis of the trace information generated by this instrumentation.
Application Note Profiling on AUTOSAR CP with ARTI | 5©1989-2023 Lauterbach

Related Documentation

1. AUTOSAR specifications

- AUTOSAR_CP_SWS_OS.pdf (formerly AUTOSAR_SWS_OS.pdf)

- AUTOSAR_CP_SWS_ARTI.pdf (formerly AUTOSAR_SWS_ClassicPlatformARTI.pdf)

- AUTOSAR_CP_EXP_ARTI.pdf (formerly AUTOSAR_EXP_ClassicPlatformARTI.pdf)

- AUTOSAR_FO_TR_TimingAnalysis.pdf (formerly AUTOSAR_TR_TimingAnalysis.pdf)

- AUTOSAR_CP_TPS_TimingExtensions.pdf (formerly
AUTOSAR_TPS_TimingExtensions.pdf)

2. TRACE32 documentation

- “General Commands Reference Guide T” (general_ref_t.pdf): Trace.STATistic / Trace.Chart
Application Note Profiling on AUTOSAR CP with ARTI | 6©1989-2023 Lauterbach

Using ARTI Hooks

Hook Macros

The AUTOSAR CP ARTI specification includes hook macros called ‘ARTI_TRACE’.
This chapter describes these hooks. The OS or the RTE must include the hooks in the appropriate locations.
The user can decide which events are of interest to him by switching on the individual hooks, The generation
of the trace messages, appropriate to the selected TRACE32 trace method is then done by the
implementation of the hook macro, provided by Lauterbach.

OS Hooks

By specification, the OS contains empty ARTI hooks for the following events of interest:

• task state changes

• ISR2 state changes

• spinlocks

• OS calls

Lauterbach offers ready-to-use OS hook implementations, see chapter “Instrumentation”, page 8. A hook
is switched on by its implementation.

ARTI also defines ISR1 (interrupt) hooks. Since ISR1s are not part of the OS, the user must manually place
the ISR1 hooks in his interrupt routines.

As of today (July 2023), most OSes do not natively contain ARTI hooks. Instead, each OS contains
individual, proprietary hooks. The ARTI hook implementation for TRACE32 contains adapters to map these
proprietary hook interfaces to ARTI (see chapter “Instrumentation”, page 8).

RTE Hooks

The ARTI hooks for the RTE mainly include the start and stop events of runnables. The AUTOSAR VFB
(Virtual Function Bus) tracing hooks are used to realize the RTE hooks. This requires two steps to switch on
the RTE hooks for the events “Runnable started” and “Runnable stopped”.

1. Enable the VFB tracing hooks in the configuration of the AUTOSAR system in general and for the
individual runnables.

2. Use the RTE vendor specific Python script provided by Lauterbach that populates the VFB
tracing hooks with ARTI hooks (see chapter “Instrumentation”, page 8).
Application Note Profiling on AUTOSAR CP with ARTI | 7©1989-2023 Lauterbach

Instrumentation

You can find the ARTI hook implementation and TRACE32 adapters for the proprietary hooks in the
TRACE32 installation folder, directory ~~/demo/kernel/arti/hooks_cp.

To include the TRACE32 support for ARTI in your project, simply copy the common directory to your build
environment, and add the arti.c file to your build artifacts. Within arti.h, select the trace method to use.
Please also read the readme.txt file within the common directory.

The directory scripts contains scripts for the TRACE32 setup for the selected TRACE32 trace method.
Additionally, you may execute the arti_menu.cmm script to add a menu item ARTI_Perf to easily access
some of the features of TRACE32 for ARTI Profiling.
Application Note Profiling on AUTOSAR CP with ARTI | 8©1989-2023 Lauterbach

Trace Methods

Various TRACE32 trace methods can be used for ARTI profiling. The methods depend on the actually used
core architecture and TRACE32 tool set. The TRACE32 trace methods differ significantly in their impact to
the application. Some have almost no impact at all but depend on the availability and capability of the trace
protocol of the core-under-test (e.g. data trace). Some have a high impact on memory consumption (e.g.
LOGGER), and some have a high impact on timing (e.g. FDX). Please also read carefully the readme.txt
files in the appropriate folder of the implementation.

Data Trace

Message generation: The trace message for the event-of-interest is generated by the core trace logic when
a write access to the ARTI trace variables occur.

Trace sink: Onchip trace buffer or trace buffer within the TRACE32 trace tool.

Prerequisites:

• The core(s)-under-test must provide the capability to generate trace messages on write
accesses to variables.

• A trace sink must be available, either on chip or in form of a TRACE32 trace tool.

• Very low impact in code size.

• Low impact with regards to the timing behavior.

• Simple TRACE32 trace setup, only trace filter on address ranges required. Please refer to your
Processor Architecture Manual.

• Onchip trace: chip timestamp required, TRACE32 trace license required.

• Parallel off-chip trace port: TRACE32 Trace Tool required, CombiProbe possible if available for
the core architecture under test, TRACE32 Trace Streaming possible without limitations.

• Serial off-chip trace port: TRACE32 Trace Tool required, chip timestamp required, TRACE32
Trace Streaming possible without limitations.

Caveats:

• Not suitable for TriCore AURIX, data tracing is not always possible for all cores.
Application Note Profiling on AUTOSAR CP with ARTI | 9©1989-2023 Lauterbach

TriCore Bus Trace

Message generation: The trace message for the event-of-interest is generated by the MCDS, MCDSlight or
miniMCDS when a write accesses to the ARTI trace variables that are located in the LMU space (TC2xx) or
in the OLDA memory space (TC3xx) occur.

Trace sink: Onchip trace buffer or trace buffer within the TRACE32 trace tool.

• Very low impact in code size, but adjustment to linker script required.

• Low impact with regards to the timing behavior.

• Complex TRACE32 trace setup, CTL trigger program required.

• Onchip trace: chip timestamp required, TRACE32 trace license required,
MCDS (TC2xx, TC3xx), MCDSlight (TC3xx) or miniMCDS (TC3xx) required.

• AGBT serial trace: TRACE32 high-end trace tool required, chip timestamp required,
MCDS (TC2xx, TC3xx) or MCDSlight (TC3xx) required,
TRACE32 Trace Streaming possible without limitations.

• DAP streaming: There are two configurations for DAP streaming:

- TRACE32 medium range debug and trace tool CombiProbe.

- TRACE32 PowerDebug E40/PRO/X50 together with TRACE32 AUTO26 Debug Cable V3; in
this case the trace memory of the PowerDebug module is used.

The requirements are identical for both configurations: chip timestamp required,
MCDS (TC2xx, TC3xx) or MCDSlight (TC3xx) required,
TRACE32 Trace Streaming possible without limitations.

TRACE32 LOGGER Trace

Message generation: The trace message for the event-of-interest is generated by the LOGGER trace
instrumentation in the target application when a write access to the ARTI trace variables occur.

Trace sink: Target memory, the LOGGER trace instrumentation stores the trace message in the target
memory.
Application Note Profiling on AUTOSAR CP with ARTI | 10©1989-2023 Lauterbach

There are two implementations available: one for SMP and one for single-core. The SMP variant is free of
spinlocks, but uses a inter-core buffer management that adds some overhead compared to the single-core
variant.

• Suitable for all cores (that do not provide a core trace logic), but timestamp resource such as
timer, counter required on the target.

• Low (medium) impact to code size by additional LOGGER instrumentation.

• Medium impact with regards to the timing behavior.

• Sufficient free target memory required for trace buffer implementation and some spare
computing time for buffer handling.

• Simple TRACE32 trace setup, established LOGGER command group.

• No extra TRACE32 tool or TRACE32 trace license required.

The “Application Note for the LOGGER Trace” (app_logger.pdf) provides an introduction to the use of the
logger trace.

TRACE32 FDX Trace

Message generation: The trace message for the event-of-interest is generated by the FDX trace
instrumentation in the target application when a write access to the ARTI trace variables occurs.

Trace sink: Target memory, the FDX trace instrumentation writes the trace message to a small trace buffer
that is located in the target memory. The FDX host application ensures that the data is transferred from the
small target trace buffer to a large trace buffer on host computer while the program execution is running.

There are two implementations available: one for SMP and one for single-core. The SMP variant uses
spinlocks, thus adding some time overhead compared to the single-core variant.

• Suitable for all cores (that do not provide a core trace logic, but enable runtime-memory access),
timestamp resource such as timer, counter required on the target.

• Low (medium) impact to code size by additional FDX instrumentation.

• Medium impact with regards to the timing behavior.

• Some free target memory (typically 4K bytes) required for trace buffer implementation and some
spare computing time for buffer handling.

• Complex TRACE32 trace setup, FDX host application has to be established.

• (Almost) unlimited trace time, because the host computer, on which the trace information is
permanently transferred, allows very large trace buffers.

• No extra TRACE32 tool or TRACE32 trace license required.

The “Application Note for FDX” (app_fdx.pdf) provides an introduction to the use of the FDX trace.
Application Note Profiling on AUTOSAR CP with ARTI | 11©1989-2023 Lauterbach

Vendor Specifics

• Elektrobit

Elektrobit provides two different OS versions: AutoCore OS and SafetyOS (aka MikroOS).
Please use the appropriate ARTI binding (eb_autocore or eb_microos).
With AutoCore OS, you may need to adjust the ORTI file, see the readme.txt file.
With SafetyOS, the ORTI file needs to be converted with a special script. See the readme.txt
file.

• ETAS

With ETAS RTA-OS, there are two different ARTI bindings, depending whether the application is
multicore or single core. Please use the appropriate one.

• Vector

For Vector's DaVinci Configurator and MICROSAR OS, there's a special “Vector-Lauterbach-
Timing-Bundle” available in ~~/demo/env/vector/rte_profiling. Please use this bundle
for the ARTI profiling.

• FreeRTOS

There is also an ARTI binding for FreeRTOS available. You need to configure FreeRTOS to
include the OS tracing hooks. See the readme.txt file.
FreeRTOS doesn't provide an RTE, so there is no RTE/runnable tracing available.

• SafeRTOS

There is also an ARTI binding for SafeRTOS available. SafeRTOS doesn't provide OS hooks. A
python script patches the SafeRTOS kernel sources to include the ARTI Hooks. See the
readme.txt file.
Application Note Profiling on AUTOSAR CP with ARTI | 12©1989-2023 Lauterbach

Object Detection

In order to decode and analyze the recorded trace, TRACE32 has to map the recorded ARTI trace IDs to the
actual AUTOSAR object (task “SchMComTask”, runnable start “Rte_Runnable_200ms”, etc.). By AUTOSAR
specification, the ARTI ARXML description contains the mapping between the AUTOSAR objects and their
ARTI trace IDs. Unfortunately, as of today (July 2023), the ARTI description is not yet created by the stack
vendors. Thus the ARTI traceID mapping needs to come from another source.

• Tasks

The task ID in the ARTI trace is directly mapped to the index of the task within the ORTI file. This
means, when using ARTI, you always need to also load the accompanying up-to-date ORTI file.
With some OSes, the build system does not directly create an “ARTI matching” ORTI file. In this
case, the ORTI file needs to be preprocessed, see Vendor Specifics above. Remember that
matching the ORTI file with the ARTI hooks is currently just a workaround to work around the
missing ARTI description.

• ISR2s

The ID for category 2 ISRs in the ARTI hooks is related to the index of the ISR2 in the ORTI file.
For this, the ISR2s must be listed in the ORTI file in a special, defined way. Sometimes the ORTI
file needs to be preprocessed after its creation to meet this need. See Vendor Specifics above.

• Interrupts

Depending on the core architecture and the trace protocol, TRACE32 can identify interrupts (or
category 1 ISRs) in the instruction trace recording. Some architectures provide extra interrupt
notifications, on others the interrupts are detected by the access to the exception vector table.
For this, however, the entire program flow would need to be recorded. A “pure” ARTI trace does
not include this information.

If category 1 ISRs are traced with the according ARTI hooks, the ID provided to the hook will
serve as ISR1 ARTI trace ID. No further translation (e.g. interrupt name) is possible, as ISR1s
names are listed nowhere.

• Runnables

When creating the VFB Tracing functions that contain the ARTI hooks for runnables, additionally
a script rte_runnable.cmm is generated. This script contains the declarations of the runnables
and their ARTI trace IDs. Execute this script in TRACE32 to announce the ID-to-runnable
mapping and to be able to identify the runnables in the further analysis.
Application Note Profiling on AUTOSAR CP with ARTI | 13©1989-2023 Lauterbach

Timing Parameters

Trace recordings for ARTI profiling must always contain a timestamp for each event-of-interest. After
recording a trace of runnables, tasks and/or ISRs, a set of timing parameters can be evaluated. These
parameters include absolute run-times, minimum/maximum run-times, cyclic event measurement etc. For a
list of available parameters, please refer to Trace.STATistic -> “Parameters” (general_ref_t.pdf) and
Trace.STATistic.TASKState.

AUTOSAR defines its own set of parameters in the “Timing Analysis and Design” specification
(AUTOSAR_FO_TR_TimingAnalysis.pdf). The chapter “AUTOSAR Classic Platform Operating System”
therein provides the following parameters and their descriptions:

ID Abr. Name Description

1 IPT initial pending time from activation to start

2 CET core execution time
(computation time)

execution time not including any preemptions or
“waiting” time

3 GET gross execution time
execution

time including all preemptions and “waiting” time

4 RT response time from activation to termination

5 DL dead line max. allowed response time

6 DT delta time from start to start (“measured period”)

7 PER period from activation to activation (period not as
measured but as configured)

8 ST slack time “remaining” run-time: from termination to
activation (tasks) or start (interrupts)

9 NST net slack time “potential additional” run-time: the ST minus all
CET blocks of any task or ISRs with higher priority
during the ST

10 JIT jitter deviation of delta time from period (not shown in
the figure below)

11 PRE preemption time time a task is preempted by higher priority task(s)
(not shown in the figure below)

12 CPU CPU load fraction of CPU time spent nonidle (usually
reported in percent) (not shown in the figure
below)
Application Note Profiling on AUTOSAR CP with ARTI | 14©1989-2023 Lauterbach

An overview of the timing parameters can be found in the following diagram:

Depending on the recorded events and the available trace data, TRACE32 is able to evaluate these events,
too. Some of the Trace.STATistic commands allow the display of these parameters (by using the /ARTI
option) or directly accept the AUTOSAR timing parameter as item. See the next chapter for details.
Application Note Profiling on AUTOSAR CP with ARTI | 15©1989-2023 Lauterbach

Overview of TRACE32 Command Structure

This chapter gives an overview of useful TRACE32 commands when working with AUTOSAR systems. It
may also serve as a quick reference guide. For a detailed description of the individual commands see the
general reference guides.

TASK.ARTI

The TASK.ARTI command group mainly manages the import of AUTOSAR ARXML files. The Arti module
of AUTOSAR exports information about used task, runnables, hooks, and also some information about the
internals of the OS to be able to perform a sophisticated debugging, tracing and profiling on systems running
AUTOSAR Classic Platform. It is intended to replace and extend the outdated ORTI format.

TRACE32 is ready to import the ARTI information in ARXML format. Unfortunately, as of today (July 2023),
no OS/RTE vendor creates ARTI ARXML data. This means, the TASK.ARTI command is there only for
future use.

TASK.ORTI

The TASK.ORTI command group handles all information that comes with the ORTI file. ORTI is a
debugging and tracing standard for OSEK OS based systems. It allows to view OS related information (e.g.
tasks, alarms, etc.) and allows real-time tracing of tasks. See “OS Awareness Manual OSEK/ORTI”
(rtos_orti.pdf) for detailed information. All known AUTOSAR stacks that provide an AUTOSAR OS are able
to create an ORTI file when generating the OS.

Note, that ORTI does not support any RTE features. In particular, ORTI does not know anything about
runnables.

To evaluate traced events, the debugger needs to know about the mapping of the ARTI trace ID to the
AUTOSAR object (see above chapter “Object Detection”, page 13). As long as the ARTI ARXML
description is not available, information about tasks and ISR2s is taken out of the ORTI file. So ensure to
have the ORTI file loaded any time using AUTOSAR related features.
Application Note Profiling on AUTOSAR CP with ARTI | 16©1989-2023 Lauterbach

TASK.List

The TASK.List command group lists objects that are relevant for profiling.

• TASK.List.tasks

This command shows all tasks that are known to the TRACE32 debugger. The debugger uses
this table when creating reports (charts, statistics, exports) out of the trace. The task list is
populated by the information from the ORTI file.

• TASK.List.RUNNABLES

This command shows all runnables known to the TRACE32 debugger, with their addresses and
their IDs. The debugger uses this table when creating reports (charts, statistics, exports) out of
the trace. The runnables have to be declared to the debugger with the command
TASK.Create.RUNNABLE. Usually the vendor binding provided with the hook implementation
contain a python script, that creates a PRACTICE script rte_runnable.cmm with all necessary
runnable declarations during the RTE generation phase.
Application Note Profiling on AUTOSAR CP with ARTI | 17©1989-2023 Lauterbach

Trace.List

Trace.List shows the contents of the recorded trace. In case of an ARTI trace, by default it shows the raw
data emitted to the trace by the instrumentation. The keyword ARTI will show an additional column in the
Trace.List window that shows the decoded ARTI object details. Use Trace.List ARTI DEFault to display the
decoded trace together with the recorded data. Please note that the decoding will only take place on trace
data that contain ARTI data (e.g. ARTI specific variables like arti_os_trace). Records that do not belong
to the ARTI trace (e.g. additional program flow trace) will be empty in the ARTI column.

The screenshot was recorded for a TriCore AURIX and will look slightly different for other core architectures.

Trace.Chart

The Trace.Chart command group opens up timing chart windows for various ARTI objects. You can display
the timing of task run times, task states, interrupts, runnables aso. Chart windows give a quick overview on
the timing behavior. You can link several chart windows together with the /Track option.

The following chapters will give more details on the usage of Trace.Chart with tasks, ISR2s and runnables.
Application Note Profiling on AUTOSAR CP with ARTI | 18©1989-2023 Lauterbach

Trace.ProfileChart

The command group Trace.PROfileChart shows in a color chart how much time an ARTI object (e.g. a
task) has consumed within fixed time intervals. It is especially useful to give a quick overview of how much
CPU load a specific portion of the code or object has consumed.

See the chapter CPU Load Measurement below how to use this command in AUTOSAR environments.

Trace.STATistic

The Trace.STATistic command group provides tables with statistic evaluations of the timing of the individual
ARTI objects. It is meant to work on various timing parameters, including those mentioned in chapter
“Timing Parameters”, page 14. You will gain minimum, maximum and average times. When exporting the
Trace.STATistic windows to a CSV file, it could be used to execute and check timing in CI (Continuous
Integration) environments.

The following chapters will give more details on the usage of Trace.STATistic with tasks, ISR2s and
runnables.
Application Note Profiling on AUTOSAR CP with ARTI | 19©1989-2023 Lauterbach

Trace.PROfileSTATistic

The Trace.PROfileSTATistic command group shows a table with timing parameters evaluated within fixed
time intervals. This allows to detect peaks or trends of parameters over the recording time. It is especially
useful to measure the CPU load in fixed time slots.

See the chapter CPU Load Measurement below how to use this command in AUTOSAR environments.

DURation Analysis

The duration analysis evaluates and shows the time distribution between two events. It is especially useful to
display the distribution of execution times, be it tasks or runnables.

The following chapters will give more details on the usage of the duration analysis with tasks and runnables,
introducing the commands Trace.STATistic.RUNNABLEDURation and
Trace.STATistic.TASKStateDURation.
Application Note Profiling on AUTOSAR CP with ARTI | 20©1989-2023 Lauterbach

DIStance Analysis

The command Trace.STATistic.DIStance evaluates and shows the time distribution between the
occurrences of a single event.

See the chapter Jitter Measurement below how to use this command to measure jitters in AUTOSAR
environments.

SMP Options

With multicore systems (SMP) there are several options for time evaluation:

• SplitCORE

With the option /SplitCORE the time for each core is calculated and displayed separately. In
AUTOSAR Classic Platform the execution of runnables or tasks is strictly bound to a specific
core, so this option is useful to explicitly see what happens on each core.

• MergeCORE

Using the /MergeCORE option, the time is calculated for each core, but the display summarizes
the results of all cores for each item. Executable entities in AUTOSAR classic platform usually do
not run on different cores, so this option usually is not needed here. It may be useful for functions
that are used cross-core.

• JoinCORE

The /JoinCORE option causes the analysis to ignore the core. This option is useful to measure
timings of individual events that may happen on different cores. It is not useful to measure run-
times that may overlap on the cores.
Application Note Profiling on AUTOSAR CP with ARTI | 21©1989-2023 Lauterbach

GROUP

The GROUP command group is mainly used for two purposes: marking and merging. GROUP allows to
group address ranges (such as functions or modules) or tasks.

You can assign a color to a specific group. Whenever a window shows portions of the group (e.g. a List
window showing the code of a function that belongs to a group), the scale area at the left will show this color
as a bar. This allows identifying quickly, to which group your currently looking at. E.g. you could group a set
of functions and/or runnables together into a group that represents your AUTOSAR SWC.

More important for the use case of profiling is the possibility of merging group members in trace analysis
windows. This gives a better overview of your system, if you have hundreds (or thousands) of objects to
watch for. You may also hide all groups that are not of interest, and concentrate on the one you're
responsible for. It also gives the possibility to assign all background and idle tasks to an “idle group”,
calculating the CPU load used by all other tasks. See chapter CPU Load Measurement below.
Application Note Profiling on AUTOSAR CP with ARTI | 22©1989-2023 Lauterbach

BMC

The BMC command group allows access to on-chip performance monitoring capabilities. Sometimes they
are called “benchmark counters” or “performance counters”. The capabilities of the BMC command group
heavily depends on the CPU architecture and the built-in features. In this application note, benchmark
counters are only covered by the chapter “CPU Load Measurement”, page 34.

Trace.EXPORT

You may want to import the results of the timing analysis done in TRACE32 into external tools that are able
to do further analysis or formatting. E.g. you may use the data of a task utilization to create a pie chart in
your favorite spreadsheet application.

TRACE32 provides several ways of exporting data, the easiest (and most flexible) one being the
PRinTer.FILE command with the CSV format. Together with the WinPrint prefix, this command allows to
export any command into a CSV table. The exported CSV table then can be imported in any application that
understands CSV.

For systems running AUTOSAR Classic Platform, the command group Trace.EXPORT is available to
interpret and export the recorded ARTI trace to various formats. These exports are dedicated for external
timing analysis tools that allow e.g. scheduling analysis and requirement tracing.

Details about the different exports that are of interest for AUTOSAR are mentioned in the below Export
chapter.
Application Note Profiling on AUTOSAR CP with ARTI | 23©1989-2023 Lauterbach

Task Runtime Analysis

The ARTI instrumentation together with the appropriate tracing method records all task state changes. The
task states in the ARTI recording follow the task state machines defined in the AUTOSAR OS specification.
The chapter ‘ARTI Hook Macros’ therein defines a standard state machine and an enhanced state
machine.

Standard state machine:

Enhanced state machine:

Which state machine is used depends on the ARTI implementation. The ARTI implementation, in turn,
depends on the OS and which hooks the OS provides. TRACE32 is able to decode both implementations,
but, of course, only analyzes and provides those task states, that are encoded in the standard or enhanced
model.

You can check with Trace.List ARTI DEFault, if the trace contains appropriate ARTI records, and if those
are decoded correctly.
Application Note Profiling on AUTOSAR CP with ARTI | 24©1989-2023 Lauterbach

Please note: the commands Trace.Chart.TASK and Trace.STATistic.TASK are not suitable for task
runtime analysis with ARTI. Those commands only evaluate the Running state, ignoring all others. E.g. the
min/max/avg times state, how long a task was in a running state, not the time from activation to termination.
Those commands, however, may be used in calculations where only the Running state is of interest, e.g.
when calculating the CPU load.

Trace.Chart.TASKState

The command Trace.Chart.TASKState draws a timing chart with all tasks and their timeline of the states.
The states are encoded as follows:

At the beginning of the trace, the states of the tasks are unknown. Only with the first appearance of a state
transition of a task the TRACE32 debugger knows about the subsequent state.

state line graphics

running solid black bar

ready, released, preempted medium blue bar

activated green line

waiting two thin red lines

suspended thin grey line

unknown no line
Application Note Profiling on AUTOSAR CP with ARTI | 25©1989-2023 Lauterbach

Trace.STATistic.TASKState

The command Trace.STATistic.TASKState opens a table with all tasks and timing parameters based on
the timeline of the task states. The parameters are listed with their maximum, minimum, average run time
together with a ratio how much CPU time the task consumed.

Without any parameter, the command will show timing parameters as defined by TRACE32. However,
AUTOSAR defines a different set of timing parameters (see chapter “Timing Parameters”, page 14).
Adding the option /ARTI to the command will open a statistic evaluation based on the most interesting
AUTOSAR parameters. The option /AllARTI lists all available items with ARTI. You can also pick the items of
interest to show only those, e.g. IPT.MAX PER.MIN CET.AVeRage.

Application Note Profiling on AUTOSAR CP with ARTI | 26©1989-2023 Lauterbach

Trace.STATistic.TASKStateDURation

The command Trace.STATistic.TASKStateDURation takes a task and a timing parameter and displays the
time duration of this parameter for the given task. See chapter “Timing Parameters”, page 14, for the
available parameters.

Useful parameters are:

; list the different time spans of the initial pending time in a flat manner
Trace.STATistic.TASKStateDURation “OsTask_RteTask_10ms” IPT /FLAT

Parameter Measurement

IPT duration from activation to start

DT duration from start to start

PER duration from activation to activation

CET core execution time duration

GET gross execution time duration
Application Note Profiling on AUTOSAR CP with ARTI | 27©1989-2023 Lauterbach

Runnable Runtime Analysis

If the ARTI instrumentation also includes the RTE (see chapter “RTE Hooks”, page 7), then the entries and
exits of the instrumented runnables will be recorded. This allows an evaluation of the timing of runnables.

You can check with Trace.List ARTI DEFault, if the trace contains appropriate ARTI records, and if those
are decoded correctly.

Trace.Chart.Runnable

The command Trace.Chart.RUNNABLE draws a timing chart with all instrumented runnables and their
timeline.

At the beginning of the trace, it is unknown, which (or even if a) runnable is running. Only with the first
appearance of an entry or exit of a runnable the debugger knows about the timing.
Application Note Profiling on AUTOSAR CP with ARTI | 28©1989-2023 Lauterbach

Trace.STATistic.RUNNABLE

The command Trace.STATistic.RUNNABLE opens a table with all instrumented runnables and timing
parameters based on the timeline of the runnables. The parameters are listed with their maximum,
minimum, average run time together with a ratio how much CPU time the runnable consumed.

Trace.STATistic.RUNNABLEDURation <runnablestart>

The command Trace.STATistic.RUNNABLEDURation takes the start address of the runnable VFB tracing
hook as parameter and displays the time duration of the given runnable. Check with
TASK.List.RUNNABLES for the exact naming of your runnable.

; list the different time spans of the runtime of runnable MyRunnable
MyRunnable.Trace.STATistic.RUNNABLEDURation MyRunnable
Application Note Profiling on AUTOSAR CP with ARTI | 29©1989-2023 Lauterbach

ISR2 Runtime Analysis

If the ARTI instrumentation includes tracing of category 2 ISRs (ISR2), all entries and exits of ISR2s are
recorded. This allows an evaluation of the timing of ISR2s.

The Trace command group uses a different naming for ISR2s. Please note the term “interrupt” therein refers
to ISR1s, while the term “INTR” or “TASKINTR” refers to ISR2s.

ISR2s are very implementation specific. While ARTI includes a clear definition and interface for ISR2s, some
OSes internally do not make a clear distinction between tasks and ISR2s. In this case usually the ORTI file
needs a modification to better separate ISR2s from tasks, in addition a proper ARTI hook implementation
must be used. See also chapters “Vendor Specifics”, page 12, “Object Detection”, page 13 and
“TASK.ORTI”, page 16.

You can check with Trace.List ARTI DEFault, if the trace contains appropriate ARTI records, and if those
are decoded correctly.

Trace.Chart.TASKINTR

The command Trace.Chart.TASKINTR draws a timing chart with all ISR2s and their timeline.

At the beginning of the trace, it is unknown, if an ISR2 is active. Only with the first appearance of an entry or
exit of an ISR2, the debugger knows about the timing.
Application Note Profiling on AUTOSAR CP with ARTI | 30©1989-2023 Lauterbach

Trace.STATistic.TASKINTR

The command Trace.STATistic.TASKINTR opens a table with all ISR2s and timing parameters based on
the timeline of the ISR2s. The parameters are listed with their maximum, minimum, average run time
together with a ratio how much CPU time the ISR2 consumed.

Trace.Chart.TASKORINTRState

The command Trace.Chart.TASKORINTRState displays the timeline of both, ISR2s and task states, side-
by-side. This allows a quick overview if and when an ISR2 interrupted a task.

Trace.STATistic.TASKORINTRState

The command Trace.STATistic.TASKORINTRState opens a table with both, ISR2s and task states, and
displays the timing parameters based on the timeline of the ISR2s and tasks. It is basically a merge of
Trace.STATistic.TASKState and Trace.STATistic.TASKINTR. It allows to analyze ISR2s and tasks both
together in one single table.

Application Note Profiling on AUTOSAR CP with ARTI | 31©1989-2023 Lauterbach

Interrupt Runtime Analysis

Tracing of interrupt routines (aka category 1 ISRs, aka ISR1s) is very architecture specific and not (yet)
handled by this application note.
Application Note Profiling on AUTOSAR CP with ARTI | 32©1989-2023 Lauterbach

Spinlock Analysis

ARTI allows to trace spinlocks, if the OS supports the appropriate hooks. The Spinlock analysis is currently
not (yet) coverd by this application note.
Application Note Profiling on AUTOSAR CP with ARTI | 33©1989-2023 Lauterbach

CPU Load Measurement

By measuring the task run times you can also compute the CPU load by calculating, how many time shares
the CPU does “nothing”, runs in an idle loop, and/or runs in an idle task.

Please note that the CPU load is always related to a time span, and can change over time. If, for example,
the trace covers 10 seconds, the overall CPU load will simply say, how much time within these 10 seconds
the CPU was active. But this does not mean, that the CPU never was overloaded. In this scenario, a CPU
load of 50% could mean, in the worse case, that it had 100% load in the first 5 seconds and 0% load in the
second 5 seconds. On the other hand, if you take the time slot too small, e.g. smaller than the run-time of a
runnable, you will always see slots with a CPU load of 100% (executing the runnable). But that's, of course,
not the CPU load you're interested in. At the end it is very important to check the overall CPU load against
loads measured with wisely set time slots.

Grouping the Idle Tasks

To measure the CPU load, or, in turn, the idle time, the debugger needs to know, which tasks count as "idle".
If no task is running at all, the ORTI specification defines a dummy task named "NO_TASK" to be set to
running. Systems may include an own idle task, or background tasks that should also be counted as "idle".
To be able to calculate the idle time, group all idle tasks together into an "idle" group, using the
GROUP.CreateTASK command, e.g.:

For a visual effect when analyzing the idle time later, you may colorize the group against all other tasks:

To add up the times when in idle time and when not in idle time, use the GROUP.Merge command:

The time spent in “other” then relates to the CPU load.

The merging of the group members applies to all Trace windows. If you want to switch back to see the timing
of the individual members, cancel the merging with:

GROUP.CreateTASK "idle" "NO_TASK" "myIdleTask" "myBackgroundTask"

GROUP.COLOR “idle” NONE
GROUP.COLOR “other” RED

GROUP.Merge “idle”
GROUP.Merge “other”

GROUP.SEParate “idle”
GROUP.SEParate “other”
Application Note Profiling on AUTOSAR CP with ARTI | 34©1989-2023 Lauterbach

The GROUP.List window gives you a dialog where you can set all these items interactively.

CPU Load Overview

After grouping and merging the idle tasks, you can get a quick overview of the CPU load within the recorded
trace. Trace.STATistic.TASK now shows the absolute time spent within the “idle” and “other” tasks, as well
as their ratio in CPU run time. The overall CPU load is hereby simply the ratio of the “other” group.

To get a quick overview of the CPU load over time, use the command Trace.PROfileChart.TASK with the
option /JoinCORE. This command will provide a colorized chart showing how much percentage the CPU
load was within fixed time intervals. The /JoinCORE option sums up the CPU load of all cores. If you set the
colors of the group as mentioned in chapter “Grouping the Idle Tasks”, page 34, you'll see the CPU load in
red, while the idle time is white. To further elaborate the timing within the time intervals, see the next chapter
CPU Load in Time Slots.

CPU Load in Time Slots

If the traced system has fixed time slots, it is useful to measure the CPU load within these slots. You can
quickly identify time slots that do not fulfil the requirements on CPU load. To measure the CPU load in fixed
time slots, merge the groups as mentioned in chapter “Grouping the Idle Tasks”, page 34. Open statistic
evaluation of task with the interval of the time slot to list all slots with the ratio of the CPU load. E.g:

Trace.PROfileSTATistic.TASK /Interval 10.ms /Ratio
Application Note Profiling on AUTOSAR CP with ARTI | 35©1989-2023 Lauterbach

If you identified a time slot that exceeds your limits, open a Trace.List ARTI DEFault /Track window and
click on the item in the table. The trace listing will scroll to the record in the trace that caused this calculation,
and you can further analyze why the CPU load was so high within this time interval.

CPU Load by Benchmark Counters

On some architectures, depending on the built-in chip capabilities, it is possible to calculate the CPU load by
benchmark counters (command group BMC). This is useful if no trace hardware is available.

To use the benchmark counters on TriCore TC3xx, you need a full MCDS implementation (MCDSlight or
miniMCDS is not sufficient). The counters will work on executed instructions, not on time ticks. This means,
you can calculate the CPU load on the number of executed instructions, but not on “real” timing. As the
execution time of a instruction is not fixed but depends on the action, the measured value is not accurate in
timing. Due to limitations in MCDS, you can measure only one core, and you can only specify one task as
“idle” task. The demo directory for the ARTI instrumentation also contains a script
cpu_load_tc3xx_bmc.cmm that calculates the CPU load based on benchmark counters.
Application Note Profiling on AUTOSAR CP with ARTI | 36©1989-2023 Lauterbach

Jitter Measurement

Jitter is the deviation of the actual measured event to the true periodicity. It is the time between the
theoretical periodic event time and the actual time the event happened. The deviation can happen due to
higher priority events (e.g. interrupts) or even deviating clock signals.

In AUTOSAR, the timing parameter “JIT” is defined as the “deviation of delta time from period”, i.e. the
difference of the start-to-start time to the activation-to-activation time.

Jitter is best measured with the Trace.STATistic.DIStance command. Use the /Filter option to select a
specific task, event, and/or core.

Jitter on Tasks

If you just want to measure the jitter of task run times (delta time, DT) use the command
Trace.STATistic.DIStance /Filter Task <task>

For measuring other events, you have to filter directly on the encoded ARTI data. The encoding of the traced
data is:

E.g if you want to measure the jitter of the event “Terminate” (ID 5) of task with ID “2” on core 1, use:

arti_os_trace = (task_id << 16) | 0x8000 | (event_id << 8) | core_id

Trace.STATistic.DIStance /Filter sYmbol arti_os_trace /Filter Data /0x00028501
Application Note Profiling on AUTOSAR CP with ARTI | 37©1989-2023 Lauterbach

You can ignore fields, e.g. to ignore the core in this example, use 0x000285xx.

It is intended to provide a script and dialog for the encoding of tasks and events, however, this is currently not
yet available.

Jitter on Runnables

The Jitter on Runnables measures the deviation of the actual periodicity of the runnables (start-to-start). Use
Trace.STATistic.DIStance with a filter encoding the ARTI data of the runnable event. The encoding of the
traced data is:

E.g if you want to measure the jitter of the runnable with ID “4” on core 1, use:

arti_rte_trace = (runnable_id << 8) | core_id

Trace.STATistic.DIStance /Filter sYmbol arti_rte_trace /Filter Data /0x00000401
Application Note Profiling on AUTOSAR CP with ARTI | 38©1989-2023 Lauterbach

You can ignore fields, e.g. to ignore the core in this example, use 0x000004xx.

It is intended to provide a script and dialog for the encoding of runnables, however, this is currently not yet
available.
Application Note Profiling on AUTOSAR CP with ARTI | 39©1989-2023 Lauterbach

Export

If you want to post-process the traced data, there are various ways to export both, the trace and the statistic
evaluations.

CSV Export

Remember, that every window in TRACE32 can be exported to a image or a textual representation. Use the
PRinTer.FILE command to specify the file name and the file format of the destination. The following
command with the WinPrint prefix will then save its contents into this file using the specified format. E.g. if
you want to export all ARTI timing parameters into a CSV file named artistats.csv, use the commands:

Trace.EXPORT.TASKEVENTS (deprecated)

TRACE32 includes a proprietary export format for instrumented task tracing.
Trace.EXPORT.TASKEVENTS is able to detect, decode and export this format. The “TASKEVENTS”
format is still available only for backward-compatibility, for new projects please use the ARTI format.

Trace.EXPORT.ARTI

The recorded ARTI trace can be exported into a well-defined CSV format using the Trace.EXPORT.ARTI
command. The exported file is a trace file in a textual CSV format, containing all decoded ARTI information,
especially the task state changes and runnable start/stop events. Several timing analysis tools are able to
import this format, please contact the tool vendor or Lauterbach for more information about tool compatibility.

PRinTer.FILe artistats.csv CSV
WinPrint.Trace.STATistic.TASKState AllARTI
Application Note Profiling on AUTOSAR CP with ARTI | 40©1989-2023 Lauterbach

Please note that ARTI specifies two different task state machines: a “standard” and an “enhanced” state
machine (see chapter “Task Runtime Analysis”, page 24). Depending on which state machine the ARTI
implementation uses, specify the appropriate option /STanDard or /ENHanced to the export command.

Trace.EXPORT.MDF

The recorded ARTI trace can be exported into an MDF file as specified by the “ASAM Run-Time Interface
Base Standard” (ASAM ARTI BS). The exported file is a binary file containing all decoded ARTI information,
especially the task state changes and runnable start/stop events. Timing analysis tools that conform to this
standard are able to import this file. Exported traces can become rather big, use the /ZIP option to reduce
the file size.
Application Note Profiling on AUTOSAR CP with ARTI | 41©1989-2023 Lauterbach

Please note that ARTI specifies two different task state machines: a “standard” and an “enhanced” state
machine (see chapter “Task Runtime Analysis”, page 24). Depending on which state machine the ARTI
implementation uses, specify the appropriate option /STanDard or /ENHanced to the export command.

Application Note Profiling on AUTOSAR CP with ARTI | 42©1989-2023 Lauterbach

TIMEX

TIMEX is an AUTOSAR specification that allows to define timing events, event chains and especially timing
constraints in an AUTSAR XML format. This allows tools to evaluate the measured times against
requirements. While TRACE32 is able to measure some of the TIMEX artifacts (like “execution time
constraints”), it does not import TIMEX descriptions. Especially TRACE32 does not do any requirement
analysis.

To use TRACE32 for requirement analysis on TIMEX, perform the ARTI tracing as mentioned in this
document. Export the trace either with Trace.EXPORT.ARTI or Trace.EXPORT.MDF (see chapters above).
Use your favorite timing requirement analysis tool to import the TIMEX file and the exported trace.

TRACE32 can be easily automated and scripted, including all the functionality described in this document.
So you can even include such a requirement analysis in your CI/CT environment.
Application Note Profiling on AUTOSAR CP with ARTI | 43©1989-2023 Lauterbach

	Application Note Profiling on AUTOSAR CP with ARTI
	History
	About this manual
	Introduction
	Related Documentation
	Using ARTI Hooks
	Hook Macros
	OS Hooks
	RTE Hooks

	Instrumentation
	Trace Methods
	Data Trace
	TRACE32 LOGGER Trace
	TRACE32 FDX Trace

	Vendor Specifics

	Object Detection

	Timing Parameters
	Overview of TRACE32 Command Structure
	TASK.ARTI
	TASK.ORTI
	TASK.List
	Trace.List
	Trace.Chart
	Trace.ProfileChart
	Trace.STATistic
	Trace.PROfileSTATistic
	DURation Analysis
	DIStance Analysis
	SMP Options
	GROUP
	BMC
	Trace.EXPORT

	Task Runtime Analysis
	Trace.Chart.TASKState
	Trace.STATistic.TASKState
	Trace.STATistic.TASKStateDURation

	Runnable Runtime Analysis
	Trace.Chart.Runnable
	Trace.STATistic.RUNNABLE
	Trace.STATistic.RUNNABLEDURation <runnablestart>

	ISR2 Runtime Analysis
	Trace.Chart.TASKINTR
	Trace.STATistic.TASKINTR
	Trace.Chart.TASKORINTRState
	Trace.STATistic.TASKORINTRState

	Interrupt Runtime Analysis
	Spinlock Analysis
	CPU Load Measurement
	Grouping the Idle Tasks
	CPU Load Overview
	CPU Load in Time Slots
	CPU Load by Benchmark Counters

	Jitter Measurement
	Jitter on Tasks
	Jitter on Runnables

	Export
	CSV Export
	Trace.EXPORT.TASKEVENTS (deprecated)
	Trace.EXPORT.ARTI
	Trace.EXPORT.MDF

	TIMEX

