
MANUAL

Application Note for
Trace-Based Code Coverage

Application Note for Trace-Based Code Coverage

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Code Coverage .. 

 Application Note for Trace-Based Code Coverage ... 1

 History .. 6

 Intended Audience .. 8

 Introduction ... 9

 Supported Code Coverage Metrics 9

 Code Coverage and Certification 10

 Trace-Based Code Coverage 12

 Introduction to the Approach 12

 Processors/Chips Suitable 14

 Code Coverage Measurement 15

 Evaluation of the Code Coverage Measurements 15

 Code Coverage for Multi-Core Systems 16

 Report Generation 16

 MC/DC, Condition and Decision Coverage ... 17

 Multiple Code Coverage Modes 17

 Preconditions for a Trace-Based Code Coverage 17

 The Individual Code Coverage Modes 18

 A Comparison of the Different Code Coverage Modes 20

 Causes for Observability Gaps: An Overview 21

 Evaluation of Switch Case Statements 22

 Code Coverage Workflows ... 23

 Workflows for Source Code Metrics 23

 General Procedure 23

 Statement Coverage Workflow 24

 Condition Coverage Workflow 29

 Decision Coverage Workflow 31

 MC/DC Workflow 33

 Function Coverage Workflow 35

 Call Coverage Workflow 37

 Workflows for Object Code Metrics 39

 General Procedure 39
Application Note for Trace-Based Code Coverage | 2©1989-2025 Lauterbach

 Object Code Coverage Workflow 40

 Object Code Based (ocb) Decision Coverage Workflow 41

 Build Process .. 43

 Introductory Notes 43

 General Recommendations for the Build Toolchain 43

 Build Process Requirements for All Code Coverage Metrics at a Glance 43

 Verification of Alignment with Production Code 45

 Build Process Call Coverage 46

 Build Process MC/DC, Condition and Decision Coverage 47

 Decide on the Appropriate Code Coverage Mode 47

 Build Process Code Coverage Mode — Targeted Instrumentation/No Instrumentation 52

 Build Process Code Coverage Mode — Breakpoint Assisted 57

 Build Process Code Coverage Mode — Full Instrumentation 58

 Selecting the Right Code Coverage Measurement Variant ... 60

 Overview Table 60

 TRACE32 Trace Tool Solutions for Code Coverage 62

 Solutions for Incremental Code Coverage in Leash Mode 62

 Solutions for Incremental Coverage in STREAM Mode and Continuous Code Coverage 63

 Best Practices for Trace Recording .. 65

 Reduce the Amount of Trace Data 65

 Ensure a Fault-Free Trace Recording 66

 Disable Timestamps for Trace Streaming 66

 Steps in Preparation for Code Coverage Measurement .. 68

 General Overview 68

 Maintaining Access to Measurement Setup for Later Evaluation 70

 Preparation for Statement, Function and Object Code Coverage 72

 Preparation for Call Coverage 73

 Preparation for MC/DC, Condition and Decision Coverage 74

 Preparation for Code Coverage with Targeted Instrumentation/No Instrumentation 74

 Preparation for Code Coverage with Breakpoints (Code in RAM) 77

 Preparation for Code Coverage with Breakpoints (Code in Flash) 79

 Preparation for Code Coverage with Full Instrumentation 80

 Code Coverage Measurement .. 83

 Incremental Code Coverage Measurement in Leash Mode 83

 Core Principles 83

 Measurement Steps 83

 Measurement Script 85

 Measurement Diagram 86

 Incremental Code Coverage Measurement in STREAM Mode 87

 Core Principles 87

 Measurement Steps 88

 Measurement Script 90
Application Note for Trace-Based Code Coverage | 3©1989-2025 Lauterbach

 Measurement Diagram 91

 Continuous Code Coverage Measurement in RTS Mode 92

 Core Principles 92

 Measurement Steps 92

 Measurement Script 95

 Measurement Diagram 96

 Continuous Code Coverage Measurement in SPY Mode 97

 Core Principles 97

 Measurement Steps 98

 Measurement Script 100

 Measurement Diagram 101

 Code Coverage with Virtual Targets 102

 ART Mode Code Coverage 104

 Data Collection 105

 Example Script 106

 Code Coverage Evaluation Outside TRACE32 - t32covtool .. 107

 Code Coverage Evaluation in TRACE32 ... 110

 Object Code Coverage 110

 Evaluation 111

 Example Script 115

 Object Code Based (ocb) Decision Coverage 116

 Evaluation 117

 Example Script 121

 Evaluation of Intermediate Results 122

 Comment Your Results ... 124

 Appendix A: TRACE32 Coverage Report Utility ... 126

 Appendix B: Merge Multiple Object Code Based Measurements 128

 Save and Restore Code Coverage Measurement 128

 Save and Restore Trace Recording 130

 Appendix C: Assembler-Only Functions and Code Coverage .. 132

 Object Code Coverage 132

 Source Code Metrics 133

 Appendix D: Data Coverage ... 135

 Trace Data Collection 135

 Evaluation 136

 Appendix E: Trace Decoding in Detail .. 139

 Trace Decoding for Static Applications 139

 Decoding in Stopped State for Static Applications 139

 Decoding in Running State for Static Applications 139

 RTS Decoding for Static Applications 140

 Trace Decoding for Applications Using a Rich OS 141
Application Note for Trace-Based Code Coverage | 4©1989-2025 Lauterbach

 Decoding in Stopped State (Rich OS) 141

 Decoding in Running State (Rich OS) 141

 RTS Decoding (Rich OS) 141

 Appendix F: Coding Guidelines ... 143

 Appendix G: Object Code Coverage Tags in Detail ... 146

 Standard Tags 146

 Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture 147

 Appendix H: Data Coverage in Detail .. 149
Application Note for Trace-Based Code Coverage | 5©1989-2025 Lauterbach

Application Note for Trace-Based Code Coverage

Version 10-Mar-2025

History

20-Feb-2025 Added 'Keep Access to Measurement Settings for Later Review' chapter with a table linking
measurement settings to code coverage metrics.

13-Feb-2025 Chapter 'Code Coverage Evaluation in TRACE32' was updated.

11-Feb-2025 The chapter 'Continuous Code Coverage Measurement in SYP Mode' was updated.

29-Jan-2025 In the chapter 'Code Coverage Measurement', the measurement details for both incremental
code coverage variants and continuous code coverage in RTS mode updated.

17-Jan-2025 Chapter 'Steps in Preparation for Code Coverage Measurement' updated.

17-Jan-2025 Chapter 'Selecting the Right Code Coverage Measurement Variant' updated. RTS code
coverage now supports all source metrics. Chapter ‘TRACE32 Trace Tool solutions for code
coverage’ added.

08-Aug-2024 Chapter 'Build Process' revised.

08-Aug-2024 Since statement coverage, decision/condition/MCDC coverage, and function/call coverage
are preferably evaluated in a web browser, the evaluation chapters for TRACE32 have been
removed.

10-Jul-2024 Description of --filelist parameter added to chapter 'TRACE32 Merge and Report Tool'.

02-Jul-2024 'Notes on Branch Coverage' added to chapter 'Code Coverage and Certification'.

02-Jul-2024 'Notes on Statement Coverage' added to chapter 'Statement Coverage Workflow'.

19-Jun-2024 Chapter 'Introduction' revised.

29-May-2024 Subchapter 'Evaluation of Switch Case Statements' added to chapter 'MC/DC, Condition and
Decision Coverage'.

26-Jan-2024 The manual has been completely revised to integrate the new code coverage modes
targeted and full instrumentation.

07-Sep-2023 EN50128 (railway) added to 'Trace-Based Code Coverage and Certification'. The chapter
now also lists the safety levels and the TRACE32 tool classification of the individual
standards.
Application Note for Trace-Based Code Coverage | 6©1989-2025 Lauterbach

19-Aug-2020 Initial version of the manual.
Application Note for Trace-Based Code Coverage | 7©1989-2025 Lauterbach

Intended Audience

This manual is intended for the following users:

• Those who create executable files for measuring code coverage

• Those who perform code coverage measurements

• Those who evaluate code coverage measurements

• Those who generate code coverage reports

Although this is a general manual, the screenshots were taken using a TriCore™ AURIX™ TC297T, unless
stated otherwise. Your screen may look different.

You only need to read the relevant chapters of this manual. Reading the entire manual may result in some
repeated information.
Application Note for Trace-Based Code Coverage | 8©1989-2025 Lauterbach

Introduction

Supported Code Coverage Metrics

TRACE32 supports the following code coverage metrics:

• Statement coverage

Statement coverage ensures that every statement in the program has been invoked at least once.

• Condition coverage

All conditions in the program have evaluated both true and false.

• Decision coverage

Every point of entry and exit in the program has been invoked at least once and every decision in the
program has taken all possible outcomes at least once.

• MC/DC coverage

Every point of entry and exit in the program has been invoked at least once and every decision in the
program has taken all possible outcomes at least once. And each condition in a decision is shown to
independently affect the outcome of that decision.

• Function coverage

Every function in the program has been invoked at least once.

• Call coverage

Every function call has been executed at least once.

• Object code coverage

Object code coverage ensures that each object code instruction was executed at least once and
all conditional instructions (e.g. conditional branches) have evaluated to both true and false.
Application Note for Trace-Based Code Coverage | 9©1989-2025 Lauterbach

Code Coverage and Certification

Measuring code coverage is a prerequisite for certification in order to evaluate the completeness of test
cases and to prove that no unintended functionality is present. TRACE32 supports the following standards:

• DO-178C (avionics)

Safety integrity levels: five levels from E to A, with level A being the highest level

Tool classification for TRACE32 code coverage: TQL-5

Supported code coverage metrics: statement coverage, decision coverage, MC/DC

• EN 50128 (railway)

Safety integrity levels: five levels, SIL 0 to 4, with SIL 4 being the highest level

Tool classification for TRACE32 code coverage: T3

Supported code coverage metrics: statement coverage, branch coverage (decision coverage in
TRACE32), compound condition coverage (condition coverage in TRACE32)

• IEC 61508 (industrial)

Safety integrity levels: five levels, basic integrity, SIL 1 to 4, with SIL 4 being the highest level

Tool classification for TRACE32 code coverage: T3

Supported code coverage metrics: statement coverage, branch coverage (decision coverage in
TRACE32), condition coverage, MC/DC as well as function coverage

• IEC 62304 (medical)

Safety integrity levels: three levels, class A to C, with class C being the highest level

Tool classification for TRACE32 code coverage: T3

Supported code coverage metrics: the standard does not contain any directives in this regard;
select suitable subset according to software development plan

• ISO 26262 (automotive)

Safety integrity levels: five levels, QM, ASIL A to D, with ASIL D being the highest level

Tool classification for TRACE32 code coverage: TCL2/3

Supported code coverage metrics: statement coverage, branch coverage (decision coverage in
TRACE32), condition coverage, MC/DC as well as function coverage.

For those whose application requires tool qualification, Lauterbach offers a Tool Qualification Support Kit
(TQSK for short). It contains everything needed to qualify a TRACE32 tool for use in safety-critical projects. If
you are interested, refer to the TRACE32 customer portal.
Application Note for Trace-Based Code Coverage | 10©1989-2025 Lauterbach

https://www.lauterbach.com/register_tqsk.html

Notes on Branch Coverage

Standards like ISO 26262 require branch coverage. Due to the similarity between branch coverage and
decision coverage, Lauterbach considers it justified to offer only decision coverage. How does Lauterbach
justify this? Let's first take a look at the definitions for the two metrics.

Definition of Branch Coverage: Branch coverage measures whether all possible branches of every
conditional statement in the source code have been executed.

Definition of Decision Coverage: Every point of entry and exit in the program has been invoked at least
once and every decision in the program has taken all possible outcomes at least once.

Decision coverage is somewhat stricter as it must consider decisions within assignments, such as
a = b || (c && d);. Although the two metrics differ in the calculation of the reported coverage rate, this
simplification can be justified with regard to the definitions.
Application Note for Trace-Based Code Coverage | 11©1989-2025 Lauterbach

Trace-Based Code Coverage

Introduction to the Approach

Before we delve into TRACE32 trace-based code coverage, let's first examine conventional code coverage.

Conventional code coverage operates by instrumenting the source code so that coverage data is stored in
the target's RAM during test execution. Once the test run is complete, the conventional code coverage tool
retrieves and processes this data for code coverage analysis.

Now, let's move on to TRACE32 trace-based code coverage which requires two main conditions:

1. The core(s)-under-test must have the capability to generate trace data to monitor the program
flow.

2. The code coverage measurement in TRACE32 relies on object code, as only this is captured in
the program flow trace recording. Source code lines are tagged for code coverage based on an
appropriate mapping between the object code and the source code. This mapping works better
when a lower level of compiler optimization is used. Consequently, TRACE32’s trace-based code
coverage cannot be conducted on production code.

For complex metrics such as Modified Condition/Decision Coverage (MC/DC), condition coverage, and
decision coverage, it may be necessary to instrument individual lines of source code. This TRACE32's
lightweight instrumentation has only a minimal impact on code size and timing behavior.
Application Note for Trace-Based Code Coverage | 12©1989-2025 Lauterbach

Figure: Workflow comparison, conventional code coverage vs. TRACE32 trace-based code coverage.

CONVENTIONAL Code Coverage

Code Coverage

Report

READ CODE COVERAGE DATA VIA
FUNCTIONAL INTERFACE OF THE TARGET

Perform Code Coverage Analysis

Generate Code Coverage Report

Code Coverage Tool

Run Test on Target Hardware and
SAVE CODE COVERAGE DATA
IN TARGET RAM

Test Tool

Build Executable

Build Process

TRACE32 TRACE-BASED Code Coverage

Code Covera ge

Report

Build Executable WITH LOW
COMPILER OPTIMIZATION LEVEL

Build Process

LIGHTWEIGHT SOURCE CODE
INSTRUMENTATION

TRACE32 Debug & Trace Tool

Can Be Required
for ComplexMetrics

Run Test on Target Hardware and
RECORD PROGRAM FLOW TRACE

TRACE32 Debug & Trace Tool

READ RECORDED PROGRAM FLOW

Perform Code Coverage Analysis

Generate Code Coverage Report

TRACE32 Debug & Trace Tool

Source
Files

C/C++

FULL SOURCE CODE
INSTRUMENTATION

Code Coverage Tool

Source
Files

 C/C++
Application Note for Trace-Based Code Coverage | 13©1989-2025 Lauterbach

TRACE32 trace-based code coverage is characterized by the following:

• No additional target resources are required beyond the program flow trace.

• Lightweight instrumentation results in minimal code and time overhead.

• It supports a wide range of code coverage metrics.

• It can be used in all test phases.

• It supports both C and C++.

• It can be used to generate comprehensive reports.

• Complete test automation is possible with TRACE32 PRACTICE, Python, or the TRACE32
Remote API.

Processors/Chips Suitable

The question now arises: which processors/chips have a trace interface suitable for code coverage
measurement with TRACE32?

• All processors/chips with an off-chip trace interface are suitable

You can find these processors/chips on the page https://www.lauterbach.com/supported-
platforms/chips, where they are tagged with "Off-Chip Trace" in the "Supported TRACE32
Solutions" column.

• Some processors/chips with an on-chip trace are suitable

Processors/chips with on-chip trace are tagged with "On-Chip Trace" in the "Supported
TRACE32 Solutions" column on the page https://www.lauterbach.com/supported-
platforms/chips. The on-chip trace should be at least 1 MB in size so that it makes sense for the
TRACE32 code coverage.

• Some chips that allow debugging and tracing via the USB stack are suitable

You can find these processors/chips on the page https://www.lauterbach.com/supported-
platforms/chips, where they are tagged with "USB Direct" in the "Supported TRACE32
Solutions" column. However, it's always best to consult with Lauterbach's sales team to confirm
compatibility.

For the processors/chips mentioned above, code coverage measurement is conducted on the target
hardware. In the early stages of testing, code coverage measurement can also be performed using
simulators. The safety standards allow this for the test phases software unit and module integration testing.
See also TRACE32 Instruction Set Simulator and ISO 26262.

If Lauterbach does not offer a TRACE32 Instruction Set Simulator for the core architecture you are using,
you can also use the TRACE32 Advanced Register Trace (Trace.METHOD ART). This is a single-step
trace, which makes program execution very slow. This method is therefore only suitable for unit testing.
Application Note for Trace-Based Code Coverage | 14©1989-2025 Lauterbach

https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://support.lauterbach.com/downloads/files/trace32-instruction-set-simulator-and-iso-26262

Code Coverage Measurement

TRACE32 offers two approaches for measuring code coverage:

Incremental Code Coverage

This method follows a two-step process—RECORDING and PROCESSING—repeated in sequence until
sufficient data is collected.

RECORDING: The program is executed, and its flow is captured in the trace memory. Program execution is
halted when the trace memory becomes full.

PROCESSING: The trace data is read, code coverage is calculated, and the results are saved in the
TRACE32 Code Coverage System.

Continuous Code Coverage

This method caluclates code coverage while the program is running. It requires processors or chips that
support off-chip trace. The following tasks occur simultaneously:

• Execute the program and record the program flow in the trace memory.

• Stream the recorded program flow to the host.

• Calculate the code coverage results and save them in the TRACE32 Code Coverage System.

Continuous code coverage is faster and easier to set up since processing steps run simultaneously.
However, it is only effective up to a certain bandwidth limit. In contrast, incremental code coverage is slower
and requires more complex scripts due to its sequential nature. Nevertheless, it is universally compatible
with any TRACE32 trace solution.

Evaluation of the Code Coverage Measurements

TRACE32 provides two approaches for evaluating code coverage:

• Evaluation in a Web Browser

This method is recommended for evaluating code coverage metrics such as statement, decision,
condition, MC/DC, call, and function coverage.

Code coverage is typically achieved incrementally rather than in a single test run. To create a
consolidated report, multiple measurements must be merged. This involves two steps:

- Export each individual code coverage result from the TRACE32 Coverage System to a JSON
file. (The JSON file contains source code level coverage results but does not include object
code.)

- Merge the JSON files from different measurements and generate an HTML file to evaluate the
desired code coverage metrics.

• Evaluation in TRACE32

For object code-based coverage metrics—such as object code coverage and object code-based
decision coverage—individual test results must be merged and analyzed directly within the
TRACE32 PowerView GUI.
Application Note for Trace-Based Code Coverage | 15©1989-2025 Lauterbach

Code Coverage for Multi-Core Systems

The TRACE32 Code Coverage System does not include track which core executed a specific object code
instruction.

AMP Debug Configuration

Typically, each TRACE32 instance independently measures and evaluates code coverage, with a separate
final report generated for each instance.

For code coverage metrics such as statement coverage, decision coverage, condition coverage, modified
condition/decision coverage (MC/DC), call coverage, and function coverage, it is possible to merge data
from multiple TRACE32 instances when the test scenario requires it. However, it’s important to note that the
code coverage data does not specify which TRACE32 instance or core executed a particular object code
instruction.

SMP/iAMP Debug Configuration

For setups where multiple cores are debugged within a single TRACE32 instance, the TRACE32 Code
Coverage System includes all relevant details to map object code to the corresponding source code. This
includes identifiers such as OS space ID, hypervisor machine ID, and iAMP machine ID, ensuring a
comprehensive overview of source code execution.

Figure: The screenshot displays iAMP machine IDs within the TRACE32 Code Coverage System.

Report Generation

The HTML file generated for evaluating code coverage measurements in a web browser can also serve as a
report.

When evaluating in the TRACE32 PowerView GUI, you can generate an HTML report at any time using the
TRACE32 Coverage Report Utility, see “Appendix A: TRACE32 Coverage Report Utility”, page 126.
Application Note for Trace-Based Code Coverage | 16©1989-2025 Lauterbach

MC/DC, Condition and Decision Coverage

Mastering these metrics presents a slightly greater challenge.

• Achieving complete code coverage may require the instrumentation of individual lines of source
code or marking them with breakpoints. Lauterbach offers multiple code coverage modes for this
purpose.

• TRACE32 must convert case statements into if-then expressions to perform code coverage.

Multiple Code Coverage Modes

This chapter needs you to know exactly what a decision and a condition are. So, just to make sure, here's an
explanation.

• A condition (yellow in the line above) is a logical indivisible, atomic expression. It can only be true
or false.

• A decision (framed by turquoise rectangle) is a logical expression which can be composed of
several (atomic) conditions separated by logical operators such as ||, &&, !. It results in true or
false.

Preconditions for a Trace-Based Code Coverage

For MC/DC, condition, or decision coverage evaluation to be conducted based on the recorded program
flow, four criteria must be met:

1. TRACE32 needs to understand the structure and location of conditions and decisions within the
source code. Since the compiler-generated debug information does not include these details,
Lauterbach provides a Clang-based command-line tool called t32cast. This tool analyzes the
C/C++ source files and generates an extended code analysis (.eca) file for each source file,
supplying the required condition and decision details.

2. Decisions consist of one or more atomic conditions. Each condition in the source code must be
represented by a conditional branch or a conditional instruction at the object code level.

3. An exact mapping between the conditions/decisions in the source code and the conditional
branches/instructions in the object code is required.

4. The conditional branches or instructions in the recorded program flow trace must enable the
observation of whether a source code condition was evaluated as true or false.

while (((!(Identity(a) >= -45) && Identity(b)) && Identity(c) || d
Application Note for Trace-Based Code Coverage | 17©1989-2025 Lauterbach

Figure: This screenshot illustrates the mapping between conditional branches in the object code, tagged as
derived from the program flow trace, to the respective source code lines representing a decision, thereby
tagging the decision line for MC/DC coverage.

Experience has demonstrated that criteria 2, 3, and 4 are not consistently met in all test scenarios. This
results in gaps in code coverage. Lauterbach refers to these gaps as observability gaps.

The Individual Code Coverage Modes

The observability gap refers to a condition in the source code that TRACE32 cannot determine whether it
was evaluated as true or false. Consequently, no code coverage result can be displayed for the
corresponding decision. Condition, decision and MC/DC coverage becomes incomplete if these gaps are
not addressed.

To prevent these gaps, it's helpful to write code in a way that's friendly to code coverage (please refer to
“Appendix F: Coding Guidelines”, page 143 for details). Moderate optimization also enhances the clarity
and intuitiveness of the code coverage analysis for the user.

Lauterbach offers several code coverage modes to address observability gaps, with Targeted
Instrumentation being the most commonly used in practice. The choice of mode primarily depends on the
number of gaps detected.

• Code coverage mode No Instrumentation

Selecting this mode assumes there are no observation gaps, allowing the build process to
remain unchanged.

• Code coverage mode Targeted Instrumentation

If there are a moderate number of observability gaps, Lauterbach suggests initially reviewing
them before deciding on their necessity for closure. Should you opt to address these gaps,
employing the code coverage mode Targeted Instrumentation is advisable.

Employing this code coverage mode can add complexity to your build process. It's good to know
that for every observability gap within each function, a corresponding hook function pair is
necessary, resulting in increased memory consumption. However, the effect on code size and
application runtime remains small.
Application Note for Trace-Based Code Coverage | 18©1989-2025 Lauterbach

• Code coverage mode Breakpoint Assisted

If you aim to address a moderate number of observability gaps without any code instrumentation,
you can opt for the Breakpoint Assisted code coverage mode. Here, observability gaps are
identified prior to code coverage measurement and promptly handled. Breakpoints are
strategically placed to stop the program execution, enabling status checks and recording of
necessary information. This mode significantly impacts application runtime.

• Code coverage mode Full Instrumentation

Various factors can contribute to a significant number of gaps: high compiler optimization,
unusual core architectures, or core/compiler combinations lacking support. For an exhaustive
examination of these potential causes, refer to the chapter “Causes for Observability Gaps: An
Overview”, page 21.

When dealing with high compiler optimization levels, consider the following:

- If maintaining a high optimization level is essential, Lauterbach recommends employing Full
Instrumentation code coverage mode. This approach introduces numerous instrumentation
points, moderately increasing both the program code size and runtime. However, from a
technical standpoint, full instrumentation is straightforward, requiring only two hook functions,
thereby allowing for further compiler optimizations.

Full instrumentation, however, necessitates adjustments of the build process. But it offers high
robustness and serves as a reliable fallback option.

- Alternatively, reducing the compiler's optimization level may be considered. Although this
increases the program's size and runtime slightly, it should reduce the number of observability
gaps to a level where Targeted Instrumentation code coverage mode with fewer
instrumentation points becomes viable.

In some cases, using either full or targeted instrumentation modes can result in a similar program
size, meaning they have essentially the same impact.

Please keep in mind that adding or modifying source code can create new
observability gaps or close existing ones. Therefore, the transition between
code coverage mode No Instrumentation and code coverage mode Targeted
Instrumentation is particularly fluid.

TRACE32 utilizes body-less hook functions for instrumentation, which are
visible in the recorded program flow. They monitor whether an instrumented
source code condition has been evaluated as true or false.

TRACE32 instrumentation doesn't need any data memory.
Application Note for Trace-Based Code Coverage | 19©1989-2025 Lauterbach

A Comparison of the Different Code Coverage Modes

The following table provides an overview of what has been stated:

No
Instrumentation

Full
Instrumentation

Targeted
Instrumentation

Breakpoint
Assisted

Number of
Instrumentation Sites

No High Low No

Instrumentation
Technique

— Two
instrumentation
hooks

A pair of
instrumentation
hooks per
observability
gap within each
function

—

Code Size Unchanged Moderately
larger

Slightly larger Unchanged

Impact on Runtime No Modest Small High

Build Process Unchanged Simple
adaptation

Complex
adaptation

Unchanged

Code Coverage
Analysis

Based on
program flow

Based on
program flow

Based on
program flow

Based on
program flow
and
status
information
Application Note for Trace-Based Code Coverage | 20©1989-2025 Lauterbach

Causes for Observability Gaps: An Overview

Lastly, for those interested in wrapping up this chapter, here's an overview of what causes observability
gaps.

No dedicated compiler support for the TRACE32 code coverage analysis

The large number of core architectures and the associated diversity of compilers represents a challenge for
Lauterbach. An impressive number of cores offer the possibility to generate program flow trace. And there
are a big number of compilers, especially for commonly used core architectures. The result is a large
amount of possible core architecture/compiler pairings. There is no generic heuristic for mapping source
code decisions to conditional branches/instructions at object code level that generates an exact result for
every possible pairing. In practice, TRACE32 has to tailor the mapping to the core architecture/compiler
combination. Much, especially for common core/compiler combinations is already tailored.

For not yet supported core architecture/compiler pairings, for which the generic heuristic of TRACE32 does
not provide an exact result, criterion 3 described on page 17 is not to be met. This results in observability
gaps.

Macros

When a macro used in a decision or condition contains its own decisions or conditions, the compiler
expands all macros before compiling, treating the expanded statement as one line of code. This causes the
original locations of decisions or conditions within the macro to be lost. As a result, criterion 3 described on
page 17 is not met, and it becomes impossible to map the decisions inside the macro to the conditional
branches or instructions. This results in observability gaps.

Highly-optimized code

Highly-optimized code is not recommended for trace-based code coverage. For one, individual conditions
may not be represented by conditional branches/instructions at the object code level. Criterion 2 described
on page 17 is violated here. However, this can be remedied. Highly optimized code is particularly
challenging because it may not possible to map the decisions/conditions exactly to the conditional
branches/instructions. The violation of criterion 3 described on page 17 cannot be resolved in all cases.

Limitations of the trace protocol

The instruction set for a core architecture may contain conditional instructions. The compiler uses these to
implement source code conditions at object code level. For trace-based code coverage to work, the trace
protocol used must generate details about the execution of these conditional instructions. Unfortunately, this
is not always the case. Currently there is no option that advises the compiler not to use conditional
instruction. Observability gaps in program tracing are therefore inevitable. Criterion 4 as described on
page 17 is violated.

If you're uncertain about the properties of your core/trace protocol, the COVerage.INFO command can offer
clarity.
Application Note for Trace-Based Code Coverage | 21©1989-2025 Lauterbach

Instruction set complexity

The issues discussed mostly apply to cores using basic RISC architecture. But in complex Systems-on-
Chips (SoCs), there are also special cores and coprocessors, like DSPs or customizable cores with user-
defined instructions. These require TRACE32 to be adjusted for their instruction sets. So, it's wise to reach
out to Lauterbach for help in such cases.

Evaluation of Switch Case Statements

To evaluate MC/DC, condition and decision for switch case statements, TRACE32 performs an implicit
conversion into an equivalent if-then expression. The equivalent if-then expression has the property that in
cases where several code paths lead to a single point, all code paths need to be executed at least once
before full code coverage is achieved. The following code example illustrates this concept:

Please note: In contrast to the original switch case statement, the converted if-then expression achieves
complete code coverage only when color had both the values YELLOW and GREEN.

Switch case statement Equivalent if-then expression

switch (color) {
 case RED:
 offset = 10;
 break;
 case BLUE:
 offset = 8;
 break;
 case ORANGE:
 offset = 6;
 break;
 case YELLOW:
 case GREEN:
 offset = 2;
 break;
 default:
 offset = -1;
 break;
}

if (color == RED) {
 offset = 10;
}
else if (color == BLUE) {
 offset = 8;
}
else if (color == ORANGE) {
 offset = 6;
}
else if (color == YELLOW) {
 offset = 2;
}
else if (color == GREEN) {
 offset = 2;
}
else {
 offset = -1;
}

Application Note for Trace-Based Code Coverage | 22©1989-2025 Lauterbach

Code Coverage Workflows

Workflows for Source Code Metrics

This chapter addresses the code coverage metrics statement coverage, decision coverage, condition
coverage, modified condition/decision coverage (MC/DC), and both call and function coverage.

General Procedure

The general procedure involves initially measuring the code coverage in TRACE32 and subsequently
evaluating it in a web browser.

Figure: After generating the appropriate executable, code coverage measurement can be conducted in
TRACE32. The resulting data must be exported as a JSON file.

Figure: The data resulting from multiple code coverage measurements can be summarized in an HTML file
and intuitively evaluated in a web browser.

Measure Code Coverage in TRACE32

Source
Files

C/C++

Build
Executable

Build Process

Trace Recording
and Code Coverage
Processing

Export Code
Coverage Result

TRACE32

JSON

Evaluate Code Coverage in a Web Browser

Merge Code Coverage
Measurements

t32covtool Tool

n

3

2

1

JSON

HTMLHTML
Evaluate

Code Coverage

WWW
Application Note for Trace-Based Code Coverage | 23©1989-2025 Lauterbach

Statement Coverage Workflow

To perform a statement coverage evaluation, follow these steps.

1. Build the Executable

Ensure to follow the guidelines in “General Recommendations for the Build Toolchain”, page 43.

2. Choose a code coverage measurement variant

Choose the variant that best fits your test scenario. Refer to “Selecting the Right Code Coverage
Measurement Variant”, page 60 for assistance in decision-making.

3. Load necessary files

Load the files relevant for statement coverage into TRACE32. See “Preparation for Statement,
Function and Object Code Coverage”, page 72.

4. Set up and execute code coverage measurement

Configure the code coverage measurement variant selected in step 2, then perform the
measurement.

- For general information on trace configuration and recording, refer to “Best Practices for
Trace Recording”, page 65.

- Detailed instructions for configuring the selected code coverage variant and performing the
measurement can be found in “Code Coverage Measurement”, page 83.

5. Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

6. Generate an HTML report

Generate an HTML report from one or more JSON files as described in “Code Coverage
Evaluation Outside TRACE32 - t32covtool”, page 107.
Application Note for Trace-Based Code Coverage | 24©1989-2025 Lauterbach

7. Evaluate the statement coverage intuitively

Evaluate the statement coverage intuitively using a web browser.

Statement coverage is achieved under the following conditions:

- Single Object Code Block: If only one block of object code is generated for a source code
line, statement coverage is achieved when at least the first object code instruction of this block
is executed.

- Multiple Non-Adjacent Object Code Blocks: If several non-adjacent blocks of object code are
generated for a source code line, statement coverage is achieved when at least the first object
code instruction of each of these blocks is executed.

If you are unfamiliar with the term "Multiple Non-Adjacent Object Code Blocks", we recommend
reading “Debugging of Optimized Code” in Training Basic SMP Debugging, page 139
(training_debugger_smp.pdf).

TRACE32 uses the following two tags to mark source code lines for statement coverage:

stmt: Statement coverage achieved.

incomplete: Statement coverage not achieved.

At the module and function levels, the tags used are:

stmt: All source code lines of the function/module are tagged with stmt.

incomplete: At least one source code line of the function/module is tagged with incomplete.

Figure: Statement coverage evaluation in a web browser.
Application Note for Trace-Based Code Coverage | 25©1989-2025 Lauterbach

Notes on Statement Coverage

In rare instances, TRACE32 Trace-Based Code Coverage may not provide precise measurements,
especially with short if-blocks. Compiler optimizations can condense these blocks, potentially resulting in
false positive statement coverage results. Let's first cover the basics and then go through a few examples.

Debug information, usually loaded with the executable, includes details about which object code
corresponds to each source code line (command sYmbol.List.LINE). The List.Mix window displays this
information. Optimizations may cause the compiler to omit object code for certain source code lines.
TRACE32 does not display line numbers for these.

Figure: In TRACE32, the source code statement b = 0;does not have line numbers.

TRACE32's code coverage analysis relies on the object code, as only the object code is recorded in the
program flow trace. Source code lines are tagged for statement coverage through an appropriate mapping
between the object code and the source code. However, TRACE32 ignores source code lines without line
numbers/corresponding object code when performing statement coverage. Consequently, some statements
are not invoked but are not explicitly tagged as incomplete in the TRACE32 statement coverage evaluation.
Here are some illustrative examples.
Application Note for Trace-Based Code Coverage | 26©1989-2025 Lauterbach

Dead Code

As part of compiler optimizations, dead code elimination leads to no object code being generated for dead
code at source code level. Since TRACE32 ignores source code lines without object code during statement
coverage, it is advisable to review the code coverage report to identify any dead code. In the TRACE32
Code Coverage Report, these source code lines are displayed next to the following line that has object code
and are shown in a lighter color.

Figure: In the TRACE32 Code Coverage Report the statements b = 0; is displayed along with the next
statement. It is shown in a lighter color.

To achieve complete statement coverage, these lines of source code must be removed.

Short if-Block (conditional branch)

Here is a small source code example where the compiler generates object code only for the statement
if (a == 5), but not for the break; statement. And the object code generated for the if statement
includes a conditional branch.

TRACE32 interprets statement coverage as: "A source code line achieves statement coverage when at least
the first object code statement generated for this line has been executed." Based on this, the if statement
would achieve statement coverage as soon as the CMP instruction is executed, regardless of whether
a == 5 is true or not. This interpretation is incorrect.

For precise statement coverage, it is essential to verify that a == 5 was evaluated both true and false. To
achieve this, you need to inspect the object code coverage for the conditional branch BNE in case of this type
of compiler optimization. As long as the conditional branch is only tagged with "taken" or '"not taken"
statement coverage has not been achieved.

if (a == 5)
 CMP R3, #5
 BNE func_end

break;

b = a+c
…
RETURN b;

Dead
code
Application Note for Trace-Based Code Coverage | 27©1989-2025 Lauterbach

Short if-Block (conditional instruction)

Here is a small source code example where the compiler generates object code only for the statement
if (a == 5), but not for the b = 7; statement. And the object code generated for the if statement
includes a conditional instruction.

TRACE32 interprets statement coverage as: "A source code line achieves statement coverage when at least
the first object code statement generated for this line has been executed." Based on this, the if statement
would achieve statement coverage as soon as the CMP instruction is executed, regardless of whether
a == 5 is true or not. This interpretation is incorrect.

For precise statement coverage, it is essential to verify that a == 5 was evaluated both true and false. To
achieve this, you need to inspect the object code coverage for the conditional instruction MOVEQ in case of
this type of compiler optimization. However, this is only possible if the trace protocol of the core under debug
supports conditional instructions. You can use the COVerage.INFO command or the
CPU.Feature(CONDTRACE) function to check this.

• If the trace protocol does not support conditional instructions, statement coverage cannot be
verified for this type of compiler optimization.

• If the trace protocol supports conditional instructions indicating whether the condition code check
passed or failed, you need to inspect the object code coverage. As long as the conditional
instruction is only tagged with "only exec" or "not exec," statement coverage has not been
achieved.

if (a == 5)
 CMP R3, #5
 MOVEQ R4, #7

 b = 7;
…

Application Note for Trace-Based Code Coverage | 28©1989-2025 Lauterbach

Condition Coverage Workflow

Before starting the evaluation for condition coverage, it is recommended to review chapter “MC/DC,
Condition and Decision Coverage”, page 17.

 To perform a condition coverage evaluation, follow these steps.

1. Build the executable

When performing condition coverage, it's possible to encounter observability gaps. TRACE32 offers
various code coverage modes to address these, outlined in chapter “The Individual Code Coverage
Modes”, page 18. Your choice of mode will depend on your application specifics. Refer to “Decide
on the Appropriate Code Coverage Mode”, page 47 for guidance in selecting the appropriate
mode.

Generate all files needed for condition coverage, as detailed in chapter “Build Process MC/DC,
Condition and Decision Coverage”, page 47. Each code coverage mode has a dedicated sub-
chapter there. Ensure adherence to the guidelines provided in “General Recommendations for the
Build Toolchain”, page 43.

2. Choose a code coverage measurement variant

Choose the variant that best fits your test scenario. Refer to “Selecting the Right Code Coverage
Measurement Variant”, page 60 for assistance in decision-making.

3. Load relevant files into TRACE32

Load the files relevant for condition coverage into TRACE32, see “Preparation for MC/DC,
Condition and Decision Coverage”, page 74. Read the sub-chapter on the code coverage mode
that you decided to use in step 1.

4. Configure and perform code coverage measurement

Configure the code coverage measurement variant selected in step 2, then perform the
measurement.

- For general information on trace configuration and recording, refer to “Best Practices for
Trace Recording”, page 65.

- Detailed instructions for configuring the selected code coverage variant and performing the
measurement can be found in “Code Coverage Measurement”, page 83.

5. Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

6. Generate an HTML report

Generate an HTML report from one or more JSON files as described in “Code Coverage
Evaluation Outside TRACE32 - t32covtool”, page 107
Application Note for Trace-Based Code Coverage | 29©1989-2025 Lauterbach

7. Evaluate the condition coverage intuitively

Evaluate the condition coverage intuitively via a web browser. TRACE32 uses the following two tags
to mark source code condition statements for condition coverage:

cc: Condition coverage achieved — both true and false evaluations for all conditions in the source
code statement have been achieved.

incomplete: Condition coverage not achieved — at least one condition in the source code statement
has not been evaluated for both true and false.

At the module and function levels, the tags used are:

stmt+cc: All source code lines of the function/module are tagged either with cc or stmt
(statement coverage achieved).

incomplete: At least one source code line of the function/module is tagged with incomplete.

Figure: Condition coverage evaluation in a web browser.
Application Note for Trace-Based Code Coverage | 30©1989-2025 Lauterbach

Decision Coverage Workflow

Before starting the evaluation for decision coverage, it is recommended to review chapter “MC/DC,
Condition and Decision Coverage”, page 17.

 To perform a decision coverage evaluation, follow these steps.

1. Build the executable

When performing decision coverage, it's possible to encounter observability gaps. TRACE32 offers
various code coverage modes to address these, outlined in chapter “The Individual Code Coverage
Modes”, page 18. Your choice of mode will depend on your application specifics. Refer to “Decide
on the Appropriate Code Coverage Mode”, page 47 for guidance in selecting the appropriate
mode.

Generate all files needed for decision coverage, as detailed in chapter “Build Process MC/DC,
Condition and Decision Coverage”, page 47. Each code coverage mode has a dedicated sub-
chapter there. Ensure adherence to the guidelines provided in “General Recommendations for the
Build Toolchain”, page 43.

2. Choose a code coverage measurement variant

Choose the variant that best fits your test scenario. Refer to “Selecting the Right Code Coverage
Measurement Variant”, page 60 for assistance in decision-making.

3. Load relevant files into TRACE32

Load the files relevant for the decision coverage into TRACE32, see “Preparation for MC/DC,
Condition and Decision Coverage”, page 74. Read the sub-chapter on the code coverage mode
that you decided to use in step 1.

4. Configure and perform code coverage measurement

Configure the code coverage measurement variant selected in step 2, then perform the
measurement.

- For general information on trace configuration and recording, refer to “Best Practices for Trace
Recording”, page 65.

- Detailed instructions for configuring the selected code coverage variant and performing the
measurement can be found in “Code Coverage Measurement”, page 83.

5. Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

6. Generate an HTML report

Generate an HTML report from one or more JSON files as described in “Code Coverage
Evaluation Outside TRACE32 - t32covtool”, page 107.
Application Note for Trace-Based Code Coverage | 31©1989-2025 Lauterbach

7. Evaluate the decision coverage intuitively

Evaluate the decision coverage intuitively via a web browser. TRACE32 uses the following two tags to
mark source code decision statements for decision coverage:

dc: Decision coverage achieved — the decision in the source code statement have taken all
possible outcomes at least once.

incomplete: Decision coverage not achieved — at least one possible outcome is missing for the
decision.

At the module and function levels, the tags used are:

stmt+dc: All source code lines of the function/module are tagged either with dc or stmt
(statement coverage achieved).

incomplete: At least one source code line of the function/module is tagged with incomplete.

Figure: Decision coverage evaluation in a web browser.
Application Note for Trace-Based Code Coverage | 32©1989-2025 Lauterbach

MC/DC Workflow

Before starting the evaluation for Modified Condition/Decision Coverage, it is recommended to review
chapter “MC/DC, Condition and Decision Coverage”, page 17.

 To perform MC/DC, follow these steps.

1. Build the executable

When performing MC/DC, it's possible to encounter observability gaps. TRACE32 offers various code
coverage modes to address these, outlined in chapter “The Individual Code Coverage Modes”,
page 18. Your choice of mode will depend on your application specifics. Refer to “Decide on the
Appropriate Code Coverage Mode”, page 47 for guidance in selecting the appropriate mode.

Generate all files needed for MC/DC, as detailed in chapter “Build Process MC/DC, Condition and
Decision Coverage”, page 47. Each code coverage mode has a dedicated sub-chapter there.
Ensure adherence to the guidelines provided in “General Recommendations for the Build
Toolchain”, page 43.

2. Choose a code coverage measurement variant

Choose the variant that best fits your test scenario. Refer to “Selecting the Right Code Coverage
Measurement Variant”, page 60 for assistance in decision-making.

3. Load relevant files into TRACE32

Load the files relevant for MC/DC into TRACE32, see “Preparation for MC/DC, Condition and
Decision Coverage”, page 74. Read the sub-chapter on the code coverage mode that you decided
to use in step 1.

4. Configure and perform code coverage measurement

Configure the code coverage measurement variant selected in step 2, then perform the
measurement.

- For general information on trace configuration and recording, refer to “Best Practices for Trace
Recording”, page 65.

- Detailed instructions for configuring the selected code coverage variant and performing the
measurement can be found in “Code Coverage Measurement”, page 83.

5. Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

6. Generate an HTML report

Generate an HTML report from one or more JSON files as described in “Code Coverage
Evaluation Outside TRACE32 - t32covtool”, page 107
Application Note for Trace-Based Code Coverage | 33©1989-2025 Lauterbach

7. Evaluate MC/DC intuitively

Evaluate MC/DC intuitively via a web browser. TRACE32 uses the following two tags to mark source
code decision statements for MC/DC:

mc/dc: MC/DC achieved — Each condition in the decision is shown to independently affect the
outcome of the decision.

incomplete: MC/DC not achieved — at least one condition in the decision has not yet been shown to
independently affect the outcome.

At the module and function levels, the tags used are:

stmt+mc/dc: All source code lines of the function/module are tagged either with mc/dc or stmt
(statement coverage achieved).

incomplete: At least one source code line of the function/module is tagged with incomplete.

Figure: MC/DC evaluation in a web browser.
Application Note for Trace-Based Code Coverage | 34©1989-2025 Lauterbach

Function Coverage Workflow

To perform function coverage evaluation, follow these steps.

1. Build the executable

Create your executable file, ensuring that function inlining is disabled for clearer and more
intuitive results. Be sure to follow the guidelines provided in “General Recommendations for the
Build Toolchain”, page 43.

2. Choose a code coverage measurement variant

Choose the variant that best fits your test scenario. Refer to “Selecting the Right Code Coverage
Measurement Variant”, page 60 for assistance in decision-making.

3. Load necessary files

Load the files relevant for function coverage into TRACE32. See “Preparation for Statement,
Function and Object Code Coverage”, page 72.

4. Configure and perform code coverage measurement

Configure the code coverage measurement variant selected in step 2, then perform the
measurement.

- For general information on trace configuration and recording, refer to “Best Practices for Trace
Recording”, page 65.

- Detailed instructions for configuring the selected code coverage variant and performing the
measurement can be found in “Code Coverage Measurement”, page 83.

5. Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

6. Generate an HTML report

Generate an HTML report from one or more JSON files as described in “Code Coverage
Evaluation Outside TRACE32 - t32covtool”, page 107.

7. Evaluate the function coverage intuitively

Evaluate the function coverage intuitively via a web browser. TRACE32 uses the following two tags to
mark the functions for function coverage:

func: Function coverage achieved — at least one function's object code instructions has been
executed.

incomplete: Function coverage not achieved — none of the function's object code instructions has
been executed.
Application Note for Trace-Based Code Coverage | 35©1989-2025 Lauterbach

Figure: Function coverage evaluation in a web browser.
Application Note for Trace-Based Code Coverage | 36©1989-2025 Lauterbach

Call Coverage Workflow

To perform call coverage evaluation, follow these steps.

1. Build the executable

Generate all files needed for call coverage, as detailed in chapter “Build Process Call Coverage”,
page 46. Ensure adherence to the guidelines provided in “General Recommendations for the
Build Toolchain”, page 43.

2. Choose a code coverage measurement variant

Choose the variant that best fits your test scenario. Refer to “Selecting the Right Code Coverage
Measurement Variant”, page 60 for assistance in decision-making.

3. Load necessary files

Load the files relevant for call coverage into TRACE32. See “Preparation for Call Coverage”, page
73.

4. Configure and perform code coverage measurement

Configure the code coverage measurement variant selected in step 2, then perform the
measurement.

- For general information on trace configuration and recording, refer to “Best Practices for Trace
Recording”, page 65.

- Detailed instructions for configuring the selected code coverage variant and performing the
measurement can be found in “Code Coverage Measurement”, page 83.

5. Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

6. Generate an HTML report

Generate an HTML report from one or more JSON files as described in “Code Coverage
Evaluation Outside TRACE32 - t32covtool”, page 107.

7. Evaluate the call coverage intuitively

Evaluate the call coverage intuitively via a web browser. TRACE32 uses the following two tags to
mark the functions for call coverage:

call: Call coverage achieved — all unconditional branches that represent a function call have been
executed at least once. If a function does not include an unconditional branch that represent a
function call, the function is tagged with call if at least one corresponding object code instruction
generated for the function has been executed.

incomplete: Call coverage not achieved — at least one unconditional branch that represent a
function call has not been executed. Or no object code instruction generated for the function has been
executed for all call-less functions.
Application Note for Trace-Based Code Coverage | 37©1989-2025 Lauterbach

Figure: Call coverage evaluation in a web browser.
Application Note for Trace-Based Code Coverage | 38©1989-2025 Lauterbach

Workflows for Object Code Metrics

This chapter addresses object code coverage and object code based (ocb) decision coverage.

General Procedure

For the object code-based code coverage metrics, all measurement and evaluation steps were conducted in
TRACE32. Finally, an HTML report can be generated for documentation purposes.

In TRACE32: Measure Code Coverage, Evaluate Code Coverage and Generate Final Report

Source
Files

C/C++

Build
Executable

Build Process

Measure
Trace-Based
Code Coverage

Merge
Code Coverage
Measurements

Evaluate
Code Coverage

Comment
Code Coverage
Results

TRACE32

HTML

Create Final Report in HTML
Application Note for Trace-Based Code Coverage | 39©1989-2025 Lauterbach

Object Code Coverage Workflow

To perform a object code coverage evaluation, follow these steps.

1. Build the executable

Ensure to follow the guidelines in “General Recommendations for the Build Toolchain”, page 43.

2. Choose a code coverage measurement variant

Select the variant that best fits your test scenario. Refer to “Selecting the Right Code Coverage
Measurement Variant”, page 60 for assistance in decision-making.

3. Load necessary files

Load the files relevant for object code coverage into TRACE32. See “Preparation for Statement,
Function and Object Code Coverage”, page 72.

4. Configure and perform code coverage measurement

Configure the code coverage measurement variant selected in step 2, then perform the
measurement.

- For general information on trace configuration and recording, refer to “Best Practices for Trace
Recording”, page 65.

- Detailed instructions for configuring the selected code coverage variant and performing the
measurement can be found in “Code Coverage Measurement”, page 83.

5. Merge the results of various code coverage measurements

Ensure you only assemble test runs carried out with the identical executable(s). Instructions for this
process can be found in “Appendix B: Merge Multiple Object Code Based Measurements”, page
128.

6. Evaluate object code coverage.

Evaluation details can be found at “Object Code Coverage”, page 110.

Figure: Object code coverage evaluation in TRACE32.

7. Comment uncovered code

Add comments to the uncovered code ranges, see “Comment Your Results”, page 124.

8. Generate final HTML report

Generate your final code coverage report as described “Appendix A: TRACE32 Coverage
Report Utility”, page 126.
Application Note for Trace-Based Code Coverage | 40©1989-2025 Lauterbach

Object Code Based (ocb) Decision Coverage Workflow

The code coverage metric ocb decision coverage is old fashioned and no longer really needed. However, it
can be helpful for special problems. If such a situation arises, our support team will inform you.

To perform a ocb decision coverage evaluation, follow these steps.

1. Build the executable

Ensure to follow the guidelines in “General Recommendations for the Build Toolchain”, page 43.

It is recommended to disable most if not all optimizations to avoid false-positive or false-negative
results. Please also check “Appendix F: Coding Guidelines”, page 143.

2. Choose a code coverage measurement variant

Select the variant that best fits your test scenario. Refer to “Selecting the Right Code Coverage
Measurement Variant”, page 60 for assistance in decision-making.

3. Load necessary files

Load the files relevant for object code coverage into TRACE32. See “Preparation for Statement,
Function and Object Code Coverage”, page 72.

4. Configure and perform code coverage measurement

Configure the code coverage measurement variant selected in step 2, then perform the
measurement.

- For general information on trace configuration and recording, refer to “Best Practices for Trace
Recording”, page 65.

- Detailed instructions for configuring the selected code coverage variant and performing the
measurement can be found in “Code Coverage Measurement”, page 83.

5. Merge the results of various code coverage measurements

Ensure you only merge test runs carried out with the identical executable(s). Instructions for this
process can be found in “Appendix B: Merge Multiple Object Code Based Measurements”, page
128.

6. Evaluate object code coverage

Evaluation details can be found at “Object Code Based (ocb) Decision Coverage”, page 116.

Figure: ocb decision coverage evaluation in TRACE32.

7. Comment uncovered code

Add comments to the uncovered code ranges, see “Comment Your Results”, page 124.
Application Note for Trace-Based Code Coverage | 41©1989-2025 Lauterbach

8. Generate final HTML report

Generate your final code coverage report as described “Appendix A: TRACE32 Coverage
Report Utility”, page 126.
Application Note for Trace-Based Code Coverage | 42©1989-2025 Lauterbach

Build Process

Introductory Notes

General Recommendations for the Build Toolchain

The recommendations outlined here apply to all code coverage metrics. TRACE32 code coverage performs
optimally at low compiler optimization levels, enhancing the mapping between object and source code. Code
coverage analysis relies on object code captured as program flow trace, and accurate mapping is more
effective with lower optimization levels. Consequently, TRACE32’s trace-based code coverage cannot be
conducted on production code.

Build Process Requirements for All Code Coverage Metrics at a Glance

In addition to the general recommendations for the build toolchain, further adjustments may be needed for
individual code coverage metrics. The following changes could be required:

• Special compiler configuration

Special compiler configurations may be required to enhance the mapping between the object
code and the source code.

• Generation of .eca files

The .eca files supply TRACE32 with essential information needed to map the program flow's
object code to the source code level, information that is not included in the compiler-generated
debug information. Lauterbach provides the command line tool t32cast for this purpose.

• Source code instrumentation

Source code instrumentation may be required if gaps in code coverage persist after mapping the
program flows's object code to the source code level.

NOTE: It is recommended to configure the toolchain so that code optimizations are
disabled and no jump tables are used. The following list shows recommended
compiler configurations for selected toolchains:

• GNU Compiler Collection (GCC) or Clang: -O0 -fno-jump-tables
• TASKING VX-Toolset: -O0 --switch=linear
• Wind River Diab Compiler: -Xoptimized-debug-off -Xdebug

-source-line-barriers-on -Xswitch-table-off
Application Note for Trace-Based Code Coverage | 43©1989-2025 Lauterbach

Low compiler optimization levels are a well-known reason why TRACE32’s trace-based code coverage
cannot be performed on production code. Additionally, some code coverage metrics necessitate specific
compiler configurations, and in some cases, code instrumentation. Therefore, there are several other factors
that restrict the use of production code for TRACE32’s trace-based code coverage.The table below offers an
overview.

Special Compiler
Configuration

.eca Files Instrumentation

Statement — — —

Condition — yes, to provide
condition details

likely

Decision — yes, to provide
decision details

likely

MC/DC — yes, to provide
condition/decision
details

likely

Function disable function
inlining

— —

Call — yes, to provide
function call details

—

Object Code — — —

ocb Decision
(deprecated)

disable most
optimizations

— —
Application Note for Trace-Based Code Coverage | 44©1989-2025 Lauterbach

Verification of Alignment with Production Code

For safety-related projects, it is essential that the code used for coverage testing mirrors the production code
exactly. Thus, both code variants should be tested side by side throughout the entire test lifecycle. The
recommended testing workflow for such projects is illustrated in the figure below.

Code Coverage
Measurement Data

=

Production Code Test Result A

Not-Optimized Code /
Instrumented Code

Test Result A'

Test Case A

Test Case A

JSON
Application Note for Trace-Based Code Coverage | 45©1989-2025 Lauterbach

Build Process Call Coverage

TRACE32 requires the following inputs for call coverage measurement in addition to the C/C++ source files:

• A folder with the .eca files

• A non-instrumented executable

ECA files

To measure call coverage, TRACE32 needs to know the locations of function calls. This information is not
contained in the debug information generated by the compiler. Therefore, Lauterbach provides a Clang-
based command line tool called t32cast. This tool analyzes the C/C++ sources and generates an extended
code analysis file (.eca) for each source file, containing the required location information. To generate these
files, use the following command:

More details can be found in “Command Line Parameters of t32cast” in Application Note for t32cast,
page 10 (app_t32cast.pdf).

It is recommended to integrate t32cast into your build process so that the ECA files are generated alongside
the executable.

Figure: Build process for call coverage; all input/outputs of the build process that need to be loaded to
TRACE32 for call coverage measurement are marked in this figure with an arrow pointing downwards.

t32cast eca -o foo.c.eca foo.c

Build Process Call Coverage

Build

Static Code Analysis

t32cast

Source
Files

 C/C++

ELF
Executable

.eca

Extended
Code Analysis

Data
Application Note for Trace-Based Code Coverage | 46©1989-2025 Lauterbach

Build Process MC/DC, Condition and Decision Coverage

If you have already chosen a code coverage mode, you can proceed directly to the relevant chapter.

• “Build Process Code Coverage Mode — Targeted Instrumentation/No Instrumentation”, page
52.

• “Build Process Code Coverage Mode — Breakpoint Assisted”, page 57.

• “Build Process Code Coverage Mode — Full Instrumentation”, page 58.

Decide on the Appropriate Code Coverage Mode

As detailed in “Multiple Code Coverage Modes”, page 17, several code coverage modes are available for
measuring MC/DC, condition, and decision coverage. Before adapting the build process for TRACE32 code
coverage measurement, you must choose the appropriate code coverage mode. Additionally, consider
whether you can use a TRACE32 Instruction Set Simulator instead of a TRACE32 Debugger with the target
during the build process.

Decision Making Process

The objective of this step is to choose the correct mode from the four TRACE32 code coverage modes,
based on the number of observability gaps. To determine this number, follow these steps:

Note that you only need a TRACE32 debugger connected to the target hardware to detect observability
gaps — trace recording is not required. The TRACE32 debugger is aware of the trace protocol properties
based on the core configuration in the debugger.

1. Build the executable

Please refer to “General Recommendations for the Build Toolchain”, page 43.

2. Generate ECA files

Use t32cast to generate the ECA files for all C/C++ files. The .eca files contain the conditions/decision
details necessary for detecting observability gaps. To create an ECA file with t32cast, use the
command::

More details can be found in “Command Line Parameters of t32cast” in Application Note for
t32cast, page 10 (app_t32cast.pdf).

t32cast eca -o foo.c.eca foo.c
Application Note for Trace-Based Code Coverage | 47©1989-2025 Lauterbach

3. Load files into TRACE32

Load all files needed for observability gap detection into TRACE32. The following files must be
loaded:

- Executable, which includes the paths to the source files

- Generated .eca files

The following commands can be used for this purpose.

4. Perform observability gaps detection

Set up and execute the mapping between decisions/conditions in the source code and the object
code.

TRACE32 detects the trace protocol based on the selected CPU (SYStem.CPU()). For trace-based
code coverage, conditional branches and instructions are particularly important. The protocol usually
determines whether it generates information about conditional instructions in addition to branches—

; basic debugger setup for the target

; load the elf executable
; the elf file includes the paths to the source files
Data.LOAD.Elf "my_app.elf"

; load the .eca files
sYmbol.ECA.LOADALL /SkipErrors

Load All Files Needed for the Observabili ty Gap Detection

ELF
Executable

Source
Files

C/C++

Verify that the object code is mapped to the
decisions/conditions of the source code, so that
no observability gaps are present, considering the
characteristics of the trace protocol used.

TRACE32 with Debugger and Target

.eca

Extended
Code Analysis

Data
Application Note for Trace-Based Code Coverage | 48©1989-2025 Lauterbach

this is typically not configurable. The only exception is ETMv4 for Cortex-M/R cores, where visibility of
conditional non-branch instructions can be enabled using ETM.COND ALL. We recommend
enabling this setting to reduce observability gaps.

5. Inspect Observability Gaps

There are two ways to inspect the observabiltiy gaps:

Figure: A warning is displayed in the message area for each condition/decision where no mapping
can be established between the source code and the object code.

Figure: The mapped/dec columns indicate the number of decisions in the software module (dec) and
how many were successfully mapped. The mapped/cond columns show the number of conditions
(cond) in the software module and how many were successfully mapped.

; ETMv4 only
; ETM.COND ALL

; clear message AREA
AREA.CLEAR

; Configure TRACE32 to account for the trace protocol in the
; mapping
sYmbol.ECA.BINary.ControlFlowMode.Trace ON

; perform mapping
sYmbol.ECA.BINary.PROCESS
; TRACE32 generates warnings when gaps in the mapping are detected

; inspect warnings in message AREA
AREA.view

; display decision/condition mapping overview
sYmbol.ECA.BINary.view
Application Note for Trace-Based Code Coverage | 49©1989-2025 Lauterbach

The following function returns the number of detected observability gaps as a decimal.

The result can indicate no, few, or many observability gaps. Note that using fewer optimization switches
should result in fewer observability gaps. Based on the result, you need to choose the appropriate code
coverage mode. The different code coverage modes are explained in “Multiple Code Coverage Modes”,
page 17.

Decide on the Use of TRACE32 Instruction Set Simulator

A TRACE32 debugger can be used in conjunction with the target hardware to detect observability gaps, no
trace recording is needed. In some cases, a TRACE32 Instruction Simulator (ISS) can also be sufficient.
The benefit of using the TRACE32 ISS is that it eliminates the need for a debugger/target configuration
during the build process. The TRACE32 ISS does not require a license for use in this context.

Unlike the TRACE32 debugger, the TRACE32 ISS does not automatically know the trace protocol properties
after core configuration. Before using the ISS, ensure it identifies the same observability gaps as the
debugger/target configuration.

Use the following command to export the observability gaps detected with a debugger/target configuration to
a JSON file:

Next, perform the same test as described in “Decision Making Process”, page 47 with a TRACE32
Instruction Set Simulator and export the detected observability gaps to a JSON file as well:

If both JSON files are identical, a TRACE32 Instruction Set Simulator can be used for the build process.

sYmbol.ECA.BINary.GAPNUMBER()

; export observabiltiy gaps from target test to JSON file
sYmbol.ECA.BINary.EXPORT.GAPS gaps_from_target_test.json

; export observabiltiy gaps from ISS test to JSON file
sYmbol.ECA.BINary.EXPORT.GAPS gaps_from_iss_test.json
Application Note for Trace-Based Code Coverage | 50©1989-2025 Lauterbach

Here is some background information: The TRACE32 ISS provides program flow information through a bus
trace, which differs from the flow trace protocol of the target hardware. While both trace types can be used to
check whether conditional branches were evaluated as true or false, their properties may vary for conditional
instructions.The table below provides an overview of key architectures, answering the following questions:

• ISA: Does the ISA of the core under debug include conditional instructions?

• Trace Target: Does the trace protocol of the core under debug generate information on the
execution of conditional instructions?

• Trace ISS: Does the bus trace of the TRACE32 ISS provide information on the execution of
conditional instructions?

• Build with ISS: TRACE32 ISS suitable for build process. When the Trace Target and the Trace
ISS share the same properties, the TRACE32 ISS can be used during the build process to detect
the observability gaps.

1) If the TRACE32 Instruction Set Simulator provides details on the execution of conditional instructions, but
the program flow trace of the real target does not provide such information, you can disable the conditional
instruction information in the TRACE32 ISS bus trace using the SIM.ConditionTraceInfo OFF command.

ISA Trace Target Trace ISS Build with ISS

Cortex-A
Cortex-R
Cortex-M

Yes Yes for ETMv3,
ETMv4 for Cortex-M
and Cortex-R

No for PTM and
ETMv4.0 for
Cortex-A and other

Arm Cores 1)

Yes Yes

C6000 No Lauterbach does not provide an
Instruction Set Simulator for the C6000
core architecture.

No

C7000 No Lauterbach does not provide an
Instruction Set Simulator for the C7000
core architecture.

No

PowerArchitecture Yes Yes2) No No

RH850 Yes No No Yes

RISC-V No No No3) Yes

AURIX™ TriCore™ Yes No No Yes

Xtensa Yes Lauterbach does not provide an
Instruction Set Simulator for the Xtensa
core architecture.

No
Application Note for Trace-Based Code Coverage | 51©1989-2025 Lauterbach

2)If NEXUS.HTM is OFF, the program flow trace will not include any information on the execution of
conditional instructions.

3) The TRACE32 Instruction Set Simulator for RISC-V supports only standard and ratified ISAs; custom
ISAs are not supported.

Build Process Code Coverage Mode — Targeted Instrumentation/No Instrumentation

In addition to the C/C++ source files, TRACE32 requires the following inputs for code coverage
measurement. These files must be generated by the build process:

• A folder with the .eca files

• A non-instrumented executable, in the case that no observabiltiy gaps were detected

• An instrumented executable, in the case that observabiltiy gaps were detected

Figure: All inputs/outputs of the build process that may need to be loaded into TRACE32 for coverage
measurement in code coverage mode target instrumentation/no instrumentation are indicated in this figure
by a downward-pointing arrow.

Build Process Code Coverage with Targeted Instrumentation / No Instrumetation

Build Build

Detect Observabilty Gaps

Create JSON Files

TRACE32

Instrumented
Source Files

C/C++

Targeted Instrumentation

Static Code Analysis

t32cast

Source
Files

 C/C++

ELF
Executable

ELF
Instrumented
Executable

.eca

Extended
Code Analysis

Data

Files for
Targeted

Instrumentation

JSON
Application Note for Trace-Based Code Coverage | 52©1989-2025 Lauterbach

The proposed build process always generates both a non-instrumented and an instrumented executable. If
no observability gaps are detected, the two executables will be identical.

To generate all the necessary files for TRACE32 code coverage measurement, the build process must be
extended as follows:

1. Add t32cast to generate the ECA files for all C/C++ files.

To create an ECA file with t32cast, please use the command:

More details can be found in “Command Line Parameters of t32cast” in Application Note for
t32cast, page 10 (app_t32cast.pdf).

2. Add TRACE32 to prepare targeted instrumentation if required

Use TRACE32 to determine if an instrumented executable is needed. If so, generate the necessary
supporting files. One approach to prepare targeted instrumentation is to call TRACE32 from the
Makefile using a script, such as export_gaps.cmm, which handles all this. There are two ways to
call TRACE32 in a testing environment:

Interactive Connection Mode (with connection script, here iss.cmm)

Classic Connection Mode (with config file, here trace32.cfg)

Please refer to “Command Line Arguments for Starting TRACE32” in TRACE32 Installation
Guide, page 53 (installation.pdf) for details.

A brief overview of the supporting files:

Flag file

The og_detected.txt flag file, located in the directory of the instrumented source files, is one
method used during the code coverage measurement to track that an instrumented executable has
been generated for code coverage mode targeted instrumentation. This is just one approach—you
are free to implement an alternative method to track this.

Files with observability gaps

For each C/C++ source file, a corresponding JSON file is created that contains the observability gaps
for that file. If a source file has no observability gaps, a dummy JSON file is still generated.

t32cast eca --export-cfg -o foo.c.eca foo.c

t32marm.exe -e ../common/iss.cmm -s ../common/export_gaps.cmm myelf.elf

t32marm.exe -c ../common/trace32.cfg -s ../common/export_gaps.cmm myelf.elf
Application Note for Trace-Based Code Coverage | 53©1989-2025 Lauterbach

The script, in our example export_gaps.cmm, that runs in TRACE32 must include the following
steps.

3.A If no observabilty gaps where detected, the non instrumented executable my_app.elf can be
used for the code coverage measurement.

PRIVATE &elf_file
ENTRY %LINE "&elf_file"

PRIVATE &instrumented_tree
&instrumented_tree="./instrumented_tree"

; basic debugger setup for the target or basic ISS setup
…

; load the non instrumented elf executable
Data.LOAD.Elf "&elf_file"

; load the generated .eca files
sYmbol.ECA.LOADALL /SkipErrors

; delete the flag file, if existing
IF FILE.EXIST(&instrumented_tree/og_detected.txt)
(
 RM &instrumented_tree/og_detected.txt
)

; ETMv4 for Cortex-M and Cortex-R only
; ETM.COND ALL

; configure TRACE32 for observability gap detection
sYmbol.ECA.BINary.ControlFlowMode.Trace ON

; perform observabilty gap detection
sYmbol.ECA.BINary.PROCESS

; create flag file if observability gaps were detected
IF sYmbol.ECA.BINary.GAPNUMBER()>0.
(

OPEN #1 &instrumented_tree/og_detected.txt /Create
WRITE #1 "Observability gaps have been detected,"
WRITE #1 "necessitating the generation of an instrumented"
WRITE #1 "executable."
CLOSE #1

)
; generate JSON files for targeted instrumentation
sYmbol.ECA.BINary.EXPORT.AdJoinGAPS
Application Note for Trace-Based Code Coverage | 54©1989-2025 Lauterbach

3.B If observabilty gaps where detected, use t32cast to perform targeted instrumentation

The result of this step should be a structure of directories (instrumented_tree in the figure below).

- For each source file that contains observabiltiy gaps, there is an instrumented version of this file in
the instrumented_tree directory (hatched rectangles for instrumented source files in the figure
below).

- For each source file that does not contain observabiltiy gaps, there is a copy of the original source
in the instrumented_tree directory (white rectangles for not-instrumented source files in the figure
below).

Figure: The instrumentation does not add any extra lines of source code. By preserving the structure
of the original_tree directory in the instrumented_tree directory, TRACE32 can be configured to
use the original, non-instrumented sources during testing.

C:

original_tree

start start1.c

control control.c

diagnosis diagnosis.c

instrumented_tree

start start1.c

control control.c

diagnosis diagnosis.c
Application Note for Trace-Based Code Coverage | 55©1989-2025 Lauterbach

To perform the code instrumentation task with t32cast, please use the following commands:

Whereby the switch mode=mcdc must also be used for condition and decision coverage.

4.B Once the targeted instrumentation is complete, the instrumented executable must be
generated.

; create additional C source files with definitions of the
; instrumentation hooks
t32cast instrument --mode=mcdc --gen-instr-source-files
--probe-dir=instrumented_tree
; the files t32pp.c and t32pp.h created this way have to be compiled
; together with the instrumented source files

; process all source files

; use JSON files as input for targeted instrumentation
; and instrument all decisions for which an observabiltiy gap was
; detected

; source files without observabiltiy gaps should be simply
; copied to instrumented_tree
t32cast instrument --mode=mcdc
--filter=original_tree\foo.c.json
-o instrumented_tree\foo.c original_tree\foo.c
Application Note for Trace-Based Code Coverage | 56©1989-2025 Lauterbach

Build Process Code Coverage Mode — Breakpoint Assisted

In addition to the C/C++ source files, TRACE32 requires the following inputs for code coverage
measurement in breakpoint assisted code coverage mode:

• A folder with the .eca files

• A non-instrumented executable

Figure: All input/outputs of the build process that are required for coverage measurement in breakpoint
assisted code coverage mode are marked with an arrow pointing downwards.

The build process must be extended so that t32cast creates an ECA file for each source code file that is
compiled. Please use the command:

More details can be found in “Application Note for t32cast” (app_t32cast.pdf).

t32cast eca -o foo.c.eca foo.c

Build Process for Breakpoint Assisted Coverage

Build

Static Code Analysis

t32cast

Source
Files

 C/C++

ELF
Executable

.eca

Extended
Code Analysis

Data
Application Note for Trace-Based Code Coverage | 57©1989-2025 Lauterbach

Build Process Code Coverage Mode — Full Instrumentation

TRACE32 requires the following inputs for code coverage with full instrumentation in addition to the C/C++
source files:

• A folder with the .eca files

• An instrumented executable

Figure: All input/outputs of the build process that are required for coverage measurement in code coverage
mode full instrumentation are marked with an arrow pointing downwards.

The build process must be extended so that t32cast creates an ECA file for each source code file that is
compiled. Please use the command:

More details can be found in “Application Note for t32cast” (app_t32cast.pdf).

 t32cast eca -o foo.c.eca foo.c

Build Process for Full Instrumentation

Build

Instrumented
Source Files

C/C++

Full Instrumentation

Static Code Analysis

t32cast C/C++

ELF
Instrumented
Executable

.eca

Extended
Code Analysis

Data

Source
Files
Application Note for Trace-Based Code Coverage | 58©1989-2025 Lauterbach

In addition, all C/C++ source files must be instrumented with t32cast, resulting in a directory structure
containing all the instrumented source files. The instrumentation does not add any extra lines of source
code. By preserving the structure of the original_tree directory in the instrumented_tree directory,
TRACE32 can be configured to use the original, non-instrumented sources during testing.

Note that the --mode=mcdc switch must be used also for condition and decision coverage.

Finally, an instrumented executable must be generated.

; create additional C source files with definitions of the
instrumentation hooks
t32cast instrument --mode=mcdc --gen-instr-source-files
--probe-dir=<instr_dir>
; the files t32pp.c and t32pp.h created this way have to be compiled
; together with the source files

; instrument all decisions/conditions in all source files
t32cast instrument --mode=mcdc -o <instr_dir\file> <org_dir\file>
Application Note for Trace-Based Code Coverage | 59©1989-2025 Lauterbach

Selecting the Right Code Coverage Measurement Variant

Overview Table

The following table aims to assist new users in choosing the most suitable code coverage measurement
variant. It provides a simplified overview, intentionally avoiding complex details for easier understanding.
Application Note for Trace-Based Code Coverage | 60©1989-2025 Lauterbach

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
�
�
��
��
��
	

�

�
�
�
�

�
	
�
�

�
	
�
�
��
�
�

�
�
�
�
�
��
�
�

�

�
�
��
�

�

�

�
��
�
�

��
�

�

�
�
�
�
�

�
	
�
�

�
��
��
�
�
�
�
�

�

�
��
�
�

��
�

�

�
�
�

!
�

�
	
�
�

�
	

��

�
	
�
�

�
"
#

�
	

��

�
	
�
�

�
�
�

�
�
��
�

�

$
�
�
�
��
%
��
	

�
��
	
�

�
�
��

�

�
�
	
�
��
�
�
�

�
�
�

�
�
�

�
��
�
��
�

�

�
��
�
�
�
�

�
�
	
�

�
�
�

�
��
	
�

�
�
�
�
��

�

�
�
���

�
�
�

�
�
	
�
��
�
�

�
�
��

�

��
�
�

�
��
	
�
�
�
�
�

�
�
�

	
�
�
�

	
�
�
�
��
�
�
�

�
�
��

�
��

�
�
	
�
��

�
�

�
��
�
�

�
��

�
�
	
�
�
�
�
��

�
�

�
�
��
�
�

�
�
��

	

�
�
�

�
�
�
�
�
��
�
�
�
�

�
�
��
�

�
�
�

�

�
�

�
�

��
�

�
��
	
�

�
�
�
�
��

�

�

��

��
�

�
�
�
�
�
�

�
�

�
�
��

�
�
�
�

	
�
�

�
�

��
	
�
��
�
�

�

�

�

�
�
��

�
�
	
�
��

�
�

�
��
�
�

�
��
	
�

�
�
��

�

�
�
	
�
��
�
�

�
�
�

�
��
�
�
�
�
�

�
�

�
�
�

�
�
�
��

�
�
�

�
��
�
��
�

	
�
�

�
�

�
��
�
�
�
�

�
�
	
�

�
�
��

	

�
�
�

�
�
��

�
�
�

�
�
�
�

	
�
���
	
��
�
�

�
�
�

�
�
	
�
��
�
�

�
�
��

�

��
�
�

�
��
	
�
�
�
�
�

�
�
�

	
�
�
�

	
�
�
�
��
�
�
�

�
�
�

�
��
	
�

�
�
��

�

�
�
	
�
��
�
�

�
�
�

�
��
�
�
�
�
�

�
�

�
�
�

�
�
�
��

�
��
�
�
�

�
�

�

�
�
�

�
�

	
�
���

�
�
�
�
�
�
�
�
�

�
�

�
��
	
�
�
�

�
�
�

�
�
��

�
�
�

	
�
�
�

	
�
�
�
��
�
�
�

�
��
	
�

�
�
��

�

�

�
�
���
�
�
�
�
�
��

�
�
	
�
��
�
�
�

�
��
�
�
�
�
�

�
�

�
�
�

�
�
�
��

�
�
�

�
��
	
�
�
�
�
�

�
�
�

	
�
�
�

	
�
�
�
��
�
�
�

�
�
!
�

&
'

�
��
�
�

�
	
��
��
	

�

�

�
�
	
�

�

�
��
	
�

�

�
�

�
��
��
	
�

�

!
�
��
	
�

"
�
��
�
#
��

�

!
�
��
	
�

$
%�
"
�&

'
(
�)

�

�

"
�
�
�

�
��
�
�

�
�
�

"
�
��
�
#
��

�

"
�
�
�

�
��
�
�

�
�
�

$
%�
"
�&

'
(
�)

�

�

�
��
	

�
�

�

�

*
�
)

�
��
	
+

�

�
$
,
"
-
'
(

%
�
�
.,
$
�

�

�
��
	
�

�
�

�

�
��
�
�

��
��
�
��

�

�
�

�
��
��
	
�

�

!
�
��
	
�

"
�
��
�
#
��

�

!
�
��
	
�

$
%�
"
�&

'
(
�)

�

�

"
�
�
�

�
��
�
�

�
�
�

"
�
��
�
#
��

�

"
�
�
�

�
��
�
�

�
�
�

$
%�
"
�&

'
(
�)

�

�
�
%
%
	
��
�
�

�
��
�
�

"
�	
�	
�
	
��

�

-
�
�
�
'
�

�
�
�
�

-
�
�
�
/

�
�
�

,
��
."
�
��
�
#

�

�
"
0
�

�
�
�

%�
�

�
�
�
�

,
*
$
%1

�

2
�
#
�
�

�
�
�

�
�
"
3
#
#
#
.�
�
�

�
�
"
3
#
#

�

2
�
#
�
�

�
�
�

�
�
"

4
�
�%
4

�
�
�
�
�
��
�
	

�
	
�
�
��
�
�

�
�
��
��
�

2
�
�

�
�

�
�
�
��

�
�
�

�

�
�
�

�
�
�
�

�
��

�
��
	
�

�
�
��
�
�

2
�
�

�
�

�
�
�
��

�
�
�

�

�
�
��
�
�
�

�
��

�
��
	
�

�
�
��
�
�

�
�
��

�
�
��

�
���

�
�

�
�
�
��

�
�
�

�

	
�

�
�
�
�
�

Application Note for Trace-Based Code Coverage | 61©1989-2025 Lauterbach

TRACE32 Trace Tool Solutions for Code Coverage

Let's take a closer look at the TRACE32 Trace Solutions. From a technical point of view, all trace solutions
that enable almost seamless recording of program execution on one or more cores are suitable for
TRACE32 Code Coverage.

TRACE32 Trace Solutions are represented in the TRACE32 PowerView GUI through the trace METHOD.
The currently selected trace method can be viewed in the Trace.state window.

Solutions for Incremental Code Coverage in Leash Mode

Trace METHODS suitable for incremental code coverage in Leash mode are:

TRACE32 Trace Solution TRACE32 Trace Method

Onchip Trace Onchip

PowerTrace
The term 'PowerTrace' encompasses all Lauterbach products that
are labeled as POWER TRACE. TRACE32 PowerTrace supports
both parallel and serial trace ports, depending on the tool
configuration.

Analyzer

µTrace
The term µTrace refers to all Lauterbach products labeled
µTRACE.

CAnalyzer

CombiProbe
The term CombiProbe refers to all Lauterbach products labeled
COMBIPROBE. However, using the CombiProbe for code
coverage requires a core trace recording of the core architecture
under test.

CAnalyzer

Tracing via USB stack
Some core architectures that support debugging over the USB
stack also provide the capability to stream core trace data to the
host computer via the USB stack.

HAnalyzer

TRACE32 ISS
TRACE32 PowerView features an integrated instruction set
simulator that supports bus tracing, making it suitable for
measuring code coverage. Lauterbach offers a TRACE32 ISS for
most supported core architectures.

Analyzer
Application Note for Trace-Based Code Coverage | 62©1989-2025 Lauterbach

Solutions for Incremental Coverage in STREAM Mode and Continuous Code Coverage

Trace METHODS suitable for incremental code coverage in STREAM mode and continuous code coverage
measurements are:

TRACE32 ART
ART (Advanced Register Trace) is a form of single-step assembler
tracing and should only be used for code coverage measurement if a
TRACE32 Instruction Set Simulator is not available for the target core
architecture. Since it significantly slows down program execution, this
solution is only suitable for unit testing.

ART

Code Coverage with Virtual Targets
Virtual targets have significant limitations in trace capture, as it
considerably slows down program execution and requires
substantial memory resources. To improve performance,
Lauterbach collaborates with virtual target vendors, such as
Synopsys, to offload certain code coverage measurements to the
virtual target itself. Currently, this approach is effective only for
object code coverage.

Analyzer

TRACE32 Trace Solution TRACE32 Trace Method

PowerTrace
The term 'PowerTrace' encompasses all Lauterbach products that
are labeled as POWER TRACE. TRACE32 PowerTrace supports
both parallel and serial trace ports, depending on the tool
configuration.

You can use incremental code coverage in STREAM mode and
continuous code coverage only if the average data rate at the trace
port remains below the average trace streaming rate of the
PowerTrace module. The average trace streaming rate for your
PowerTrace module is available at “Trace Modules” in TRACE32
Terminology, page 10 (trace32_terms.pdf).

Analyzer

µTrace
The term µTrace refers to all Lauterbach products labeled
µTRACE.

CAnalyzer

CombiProbe
The term CombiProbe refers to all Lauterbach products labeled
COMBIPROBE. However, using the CombiProbe for code
coverage requires a core trace recording of the core architecture
under test.

CAnalyzer

TRACE32 Trace Solution TRACE32 Trace Method
Application Note for Trace-Based Code Coverage | 63©1989-2025 Lauterbach

In most cases, TRACE32 automatically detects the available trace solution and selects the appropriate trace
METHOD. For all other cases, the trace method can be manually set using the Trace.METHOD command.
Application Note for Trace-Based Code Coverage | 64©1989-2025 Lauterbach

Best Practices for Trace Recording

The following recommendations apply to the Trace Methods Analyzer (excluding TRACE32 ISS),
CAnalyzer, and HAnalyzer.

Reduce the Amount of Trace Data

It is recommended to reduce the amount of trace data to the required minimum to make best use of the
available trace memory. If trace information is exported off-chip via a dedicated trace port this reduction
can also help to avoid an overload of the trace port.

It is recommended to configure the trace infrastructure:

• to generate only trace information for the program flow.

• to generate additionally trace information for the task switches if a rich OS such as Linux is used.

• to not generate chip timestamps if supported by the trace protocol.

Details of how to do this can be found in the manuals:

• “Training Cortex-M Tracing” (training_cortexm_etm.pdf)

• MPC5xxx/SPC5xxx, QorIQ and RH850: “Training MPC5xxx/SPC5xx Nexus Tracing”
(training_nexus_mpc5500.pdf)

• For other processor architectures, please refer to the corresponding “Processor Architecture
Manuals”.

For target systems using a rich OS such as Linux a method of determining task switches must also be
included in the trace data. More information can be found here:

- “Training Linux Debugging” (training_rtos_linux.pdf).

- For other operating systems, please refer to the corresponding “OS Awareness Manuals”
(rtos_<os>.pdf).
Application Note for Trace-Based Code Coverage | 65©1989-2025 Lauterbach

Ensure a Fault-Free Trace Recording

Before you start with code coverage, it is recommended to check if the trace recording is working properly.
Here is a simple script:

The code coverage evaluation can tolerate individual FLOWERRORs. However, it is recommended to
ensure that the number of FLOWERRORs is as small as possible.

The code coverage evaluation can tolerate gaps in the trace caused by TARGET FIFO OVERFLOWs but
this will result in gaps in the coverage data.

Disable Timestamps for Trace Streaming

All general rules applying to trace streaming are described under Trace.Mode STREAM.

Since the timestamps that TRACE32 assigns for the trace records have no significance for code coverage,
they do not have to be streamed to the host computer. This considerably reduces the data rate. Please use
the command Trace.PortFilter MAX for this purpose.

Go
Break
SILENT.Trace.Find FLOWERROR /ALL
IF FOUND.COUNT()!=0.
(
 PRIVATE &msg
 &msg="FLOWERRORS were found in the analyzed trace recording."
 &msg="&msg It is recommended to check"
 &msg="&msg if the trace recording works properly."
 ECHO FOUND.COUNT() "&msg"
)
ELSE
(
 ECHO "The analyzed trace recording does not contain FLOWERRORS."
)
ENDDO

T
ra
c
e
p
o
rt

Raw trace data

TRACE32

trace tool

Trace buffer

TRACE32

debug module

Data stream to host

Raw trace data TRACE32 tool timestamps
Application Note for Trace-Based Code Coverage | 66©1989-2025 Lauterbach

The current PortFilter setting is displayed in the TRACE32 state line when you enter the command
Trace.PortFilter followed by a space.
Application Note for Trace-Based Code Coverage | 67©1989-2025 Lauterbach

Steps in Preparation for Code Coverage Measurement

General Overview

This chapter outlines the steps required to set up code coverage measurement for each specific metric.
These steps include:

1. Loading all necessary files

The files needed depend on the code coverage metric used.

If you plan to use continuous measurement, code coverage is processed during program execution.
To enable continuous coverage measurement, it's essential to load the object code into TRACE32
Virtual Memory, which resides on the host computer, to ensure optimal performance. In this case,
reload the code using the /VM option.

2. Excluding alignment padding

Many core architectures require data to be aligned at specific memory addresses for efficient access.
To maintain proper function alignment, extra bytes — containing no executable code — are often
inserted at the end of functions. These extra bytes must be excluded to achieve accurate code
coverage measurement.

; load the executable to the TRACE32 Virtual Memory
; for continuous code coverage measurement
Data.LOAD.Elf "my_app.elf" /VM
Application Note for Trace-Based Code Coverage | 68©1989-2025 Lauterbach

Additional step for MC/DC, condition coverage, and decision coverage

3. Customizing special tagging options

TRACE32 has predefined default settings for tagging optimized-out decisions, infinite loops, and
linear decisions. Review these settings and adjust them as needed to suit your requirements.

The following tagging option must be reviewed and adjusted if necessary.

• IGNOREDEAD

Source code decisions that have been optimized out by the compiler are ignored and thus not
tagged by default. For a detailed explanation of the command, see
COVerage.Option IGNOREDEAD.

• IGNOREINF

Infinite loops are decisions that are always evaluated as true, meaning they will consistently be
tagged as incomplete. By default, they are treated as statements and tagged accordingly. For a
detailed explanation of the command, see COVerage.Option IGNOREINF.

• IGNORELINEAR

This option controls how decisions within assignments, nested assignments, returns, and
decisions used as function parameters are tagged. By default, they are tagged in the same
manner as all other decisions. For a detailed explanation of the command, see
COVerage.Option IGNORELINEAR.
Application Note for Trace-Based Code Coverage | 69©1989-2025 Lauterbach

4. Configuring the TRACE32 Code Coverage Modes

For the code coverage metrics MC/DC (Modified Condition/Decision Coverage), condition coverage,
and decision coverage, various modes are available. These include code coverage measurement
with targeted or no instrumentation, breakpoint-assisted code coverage measurement, and full-
instrumentation code coverage measurement. To configure TRACE32 for a specific mode, you
need to explicitly specify the data to be analyzed during code coverage processing:

Trace: Include conditional branches and, when applicable, conditional instructions recorded in
the trace for the code coverage calculation.
Command: sYmbol.ECA.BINary.ControlFlowMode.Trace

INSTR: Include code Instrumentation probes within the source code in the code coverage calculation.
Command: sYmbol.ECA.BINary.ControlFlowMode.INSTR

Break: Account for status information captured when TRACE32 briefly halts at a code coverage
breakpoint during the calculation.
Command: sYmbol.ECA.BINary.ControlFlowMode.Break

Maintaining Access to Measurement Setup for Later Evaluation

Since code coverage measurement is conducted in TRACE32, while the evaluation — covering statement,
call, and function coverage, as well as decision, condition, and modified condition/decision coverage
(MC/DC) — takes place in a web browser, it is crucial for the evaluator to have access to key information
about the measurement setup. The following elements are particularly important:

• Access to the loaded .elf file

• Knowledge of the source code version used to generate the .elf file

• Access to the startup script used to configure TRACE32 for code coverage measurement
Application Note for Trace-Based Code Coverage | 70©1989-2025 Lauterbach

The following table illustrates which measurement setup is best suited for each code coverage metric.

With the ClipSTORE ECA command, code coverage setup commands from the sYmbol.ECA.BINary
command group can be transferred into the clip text.

Statement
Function

Call Condition
Decision
MC/DC

non-instrumented
executable
+ ControlFlowMode Trace

best unsuitable unsuitable

non-instrumented
executable
+ .eca files
+ ControlFlowMode Trace

possible best only applicable if
there are no observ-
ability gaps or if exist-
ing gaps are to be
addressed through
methods other than
code instrumentation

non-instrumented
executable
+ .eca files
+ ControlFlowMode Trace
+ ControlFlowMode Break

possible possible suitable only if you
absolutely do not
want to use instru-
mentation

lightweight instrumented
executable
+ .eca files
+ ControlFlowMode Trace
+ ControlFlowMode INSTR

possible possible best

fully instrumented
executable
+ .eca files
+ ControlFlowMode INSTR

not
recommended

not
recommended

as a fallback if all
else fails
Application Note for Trace-Based Code Coverage | 71©1989-2025 Lauterbach

Preparation for Statement, Function and Object Code Coverage

The following files need to be loaded into TRACE32:

• Executable, which includes paths to all source files

• TRACE32 OS Awareness, if an operating system is used by the target application

After loading the files, alignment padding must be excluded from the code coverage measurement.

The following commands can be used for this purpose:

; basic debug and trace setup

; load the elf executable
; the elf file includes the paths to the source files
Data.LOAD.Elf "my_app.elf"

; mirror the executable to the TRACE32 Virtual Memory
; for continuous code coverage only
Data.LOAD.Elf "my_app.elf" /VM

; load the OS Awareness if needed
TASK.CONFIG myos.t32

; exclude alignment padding from code coverage measurement
sYmbol.CLEANUP.AlignmentPaddings

Preparation for Statement, Function and Object Code Coverage

ELF
Executable

Load all Needed Files

Exclude Alignment Paddings

TRACE32

.t32
OS Awaren-

ess

Source
Files

C/C++

Source
Files

C/C++
Application Note for Trace-Based Code Coverage | 72©1989-2025 Lauterbach

Preparation for Call Coverage

The following files need to be loaded into TRACE32:

• Executable, which includes paths to all source files

• Generated .eca files

• TRACE32 OS Awareness, if an operating system is used by the target application

After loading the files, alignment padding must be excluded from the code coverage measurement.

The following commands can be used for this purpose:

; basic debug and trace setup

; load the elf executable
; the elf file includes the paths to the source files
Data.LOAD.Elf "my_app.elf"

; mirror the executable to the TRACE32 Virtual Memory
; for continuous code coverage only
Data.LOAD.Elf "my_app.elf" /VM

; load the .eca files
sYmbol.ECA.LOADALL /SkipErrors

; load the OS Awareness is needed
TASK.CONFIG myos.t32

; exclude alignment paddings from code coverage measurement
sYmbol.CLEANUP.AlignmentPaddings

Preparation for Call Coverage

ELF
Executable

Load all Needed Files

Exclude Alignment Paddings

TRACE32

.t32
OS Awaren-

ess

.eca

Extended
Code Analysis

Data

Source
Files

C/C++
Application Note for Trace-Based Code Coverage | 73©1989-2025 Lauterbach

Preparation for MC/DC, Condition and Decision Coverage

The preparation is different for the individual TRACE32 Code Coverage Modes:

• “Preparation for Code Coverage with Targeted Instrumentation/No Instrumentation”, page 74.

• “Preparation for Code Coverage with Breakpoints (Code in RAM)”, page 77.

• “Preparation for Code Coverage with Breakpoints (Code in Flash)”, page 79.

• “Preparation for Code Coverage with Full Instrumentation”, page 80

Preparation for Code Coverage with Targeted Instrumentation/No Instrumentation

The Targeted Instrumentation/No Instrumentation code coverage modes must be set up as follows:

1. Load the executable

The presence of the flag file og_detected.txt indicates whether an instrumented or non
instrumented executable should be loaded for code coverage measurement.

Preparation Targeted or No Instrumentation for MC/DC, Condition and Decision Coverage

ELF
Executable

.eca

Extended
Code Analysis

Data

TRACE32

or
.t32

OS Awaren-
ess

Source
Files

C/C++

ELF
Instrumented
Executable

C/C++

Load all Needed Files

Exclude Alignement Padding

Setup TRACE32 for Targeted or
No Instrumentation Mode

Source
Files

C/C++
Application Note for Trace-Based Code Coverage | 74©1989-2025 Lauterbach

If an instrumented executable is loaded, the source file paths must be adjusted to point to the original
sources. The sYmbol.SourcePATH command group offers various ways of doing this. An
introduction to this topic can be found in “Option and Commands to Get the Correct Paths for the
HLL Source Files” in Training Source Level Debugging, page 9
(training_source_level_debugging.pdf)

2. Load the generated .eca file

3. Load the TRACE32 OS Awareness

Load the TRACE32 OS Awareness if an operating system is used by the target application.

4. Exclude alignment padding

After loading the files, alignment padding must be excluded from the code coverage measurement.

5. Setup TRACE32 for targeted instrumentation/no instrumentation code coverage

In both modes, conditional branches and, when possible, conditional instructions recorded in the
trace (Trace) serve as input data for code coverage processing. When targeted instrumentation is
used, the instrumentation probes within the object code (INSTR) are additionally included to the input
data. A static preprocessing is required in both cases.

The following framework can be used for this purpose:

; basic debug and trace setup

; Load the appropriate executable based on the presence of the flag file
IF FILE.EXIST(og_detected.txt)
(
 Data.LOAD.Elf "my_app_targeted.elf"
 ; mirror the instrumented executable to the TRACE32 Virtual Memory
 ; for continuous code coverage only
 Data.LOAD.Elf "my_app_targeted.elf" /VM

 ; translate the links in 'my_app_targeted.elf' to point to the original source
 ; files, allowing to test with the original sources
 sYmbol.SourcePATH.Translate "./instrumented_tree" "./original_tree"
 PRINT "Executable with targeted instrumentation loaded."
)
ELSE
(
 Data.LOAD.Elf "my_app.elf"
 ; mirror the executable to the TRACE32 Virtual Memory
 ; for continuous code coverage only
 Data.LOAD.Elf "my_app.elf" /VM
 PRINT "Non instrumented executable loaded."
)

; load the .eca files
sYmbol.ECA.LOADALL /SkipErrors

; load the OS Awareness is needed
TASK.CONFIG myos.t32

; exclude alignment padding from code coverage measurement
sYmbol.CLEANUP.AlignmentPaddings
Application Note for Trace-Based Code Coverage | 75©1989-2025 Lauterbach

; if you used ETM.COND ALL for ETMv4 on Cortex-M and Cortex-R during the build
; process, you must also use it for code coverage measurement
; ETM.COND ALL

; configure code coverage mode

; use conditional branches and, where possible, conditional instructions
; in trace recording for code coverage measurement
sYmbol.ECA.BINary.ControlFlowMode.Trace ON

; use instrumentation probes in "my_app_targeted.elf" for code coverage
; measurement
IF FILE.EXIST(og_detected.txt)
(
 sYmbol.ECA.BINary.ControlFlowMode.INSTR ON
)

; perform the static preprocessing for MC/DC, condition and decision coverage
sYmbol.ECA.BINary.PROCESS

; everything should be set up to ensure there are no observability gaps,
; but double-check it
IF sYmbol.ECA.BINary.GAPNUMBER()>0.
(
 PRINT sYmbol.ECA.BINary.GAPNUMBER() " observability gaps detected. \
 Please check the remaining observability gaps."
)

Application Note for Trace-Based Code Coverage | 76©1989-2025 Lauterbach

Preparation for Code Coverage with Breakpoints (Code in RAM)

To configure the breakpoint-assisted code coverage mode when the object code is located in RAM, follow
these steps:

1. Load required Files

The following files must be loaded into TRACE32:

- Not-instrumented executable, which includes the links to all source files.

- Generated .eca files.

- TRACE32 OS Awareness, if the target application uses an operating system.

2. Exclude alignment padding

After loading the files, ensure that alignment padding is excluded from the code coverage
measurement.

3. Setup TRACE32 for breakpoint assisted code coverage

In this mode, conditional branches and, where possible, conditional instructions recorded in the trace
(Trace) serve as input data for code coverage processing, along with status information recorded at
code coverage breakpoints (Break). Static preprocessing is required to set the necessary breakpoints
at the decisions/conditions where observability gaps have been detected.

For completeness, it should be noted that the status information checked when a code coverage
breakpoint briefly stops program execution is stored within the internal TRACE32 code coverage
system.

Preparation for Breakpoint Assisted MC/DC, Condition and Decision Coverage

ELF
Executable

Source
Files

C/C++

Load all Needed Files

Exclude Alignment Padding

Setup TRACE32 for Breakpoint
Assisted Mode

TRACE32

.t32
OS Awaren-

ess

.eca

Extended
Code Analysis

Data
Application Note for Trace-Based Code Coverage | 77©1989-2025 Lauterbach

The following framework can be used for this purpose:

; basic debug and trace setup

; load executable
Data.LOAD.Elf "my_app.elf"

; mirror the executable to the TRACE32 Virtual Memory
; for continuous code coverage only
Data.LOAD.Elf "my_app.elf" /VM

; load the .eca files
sYmbol.ECA.LOADALL /SkipErrors

; load the OS Awareness is needed
TASK.CONFIG myos.t32

; exclude alignment paddings from code coverage measurement
sYmbol.CLEANUP.AlignmentPaddings

; configure code coverage mode

; use conditional branches and, where possible, conditional instructions
; in trace recording for code coverage measurement
sYmbol.ECA.BINary.ControlFlowMode.Trace ON

; set a code coverage breakpoint at all decisions/conditions where an
; observability gap was detected during static preprocessing
; and use the status information recorded during program execution
; as input for the code coverage processing
sYmbol.ECA.BINary.ControlFlowMode.Break ON

; perform the static preprocessing for MC/DC, condition and decision
; coverage
sYmbol.ECA.BINary.PROCESS

; display list of code coverage breakpoints
Break.List
Application Note for Trace-Based Code Coverage | 78©1989-2025 Lauterbach

Preparation for Code Coverage with Breakpoints (Code in Flash)

To configure the breakpoint-assisted code coverage mode when the object code is located in Flash, follow
these steps:

Preparation for Breakpoint Assisted MC/DC, Condition and Decision Coverage

ELF
Executable

Source
Files

C/C++

Load all Needed Files

Exclude Alignment Padding

Setup TRACE32 for Breakpoint
Assisted Mode

TRACE32

.t32
OS Awaren-

ess

.eca

Extended
Code Analysis

Data
Application Note for Trace-Based Code Coverage | 79©1989-2025 Lauterbach

Preparation for Code Coverage with Full Instrumentation

To set up the full instrumentation code coverage mode, follow these steps:

Preparation Full Instrumentation for MC/DC, Condition and Decision Coverage

Source
Files

C/C++

Load all Needed Files

Exclude Alignment Padding

Stetup TRACE32 for Full
Instrumentation Mode

TRACE32

.t32
OS Awaren-

ess

.eca

Extended
Code Analysis

Data

ELF
Instrumented
Executable
Application Note for Trace-Based Code Coverage | 80©1989-2025 Lauterbach

1. Load required Files

The following files must be loaded into TRACE32:

- Instrumented executable, which includes the links to all source files. If an instrumented executable is
loaded, the source file paths must be adjusted to point to the original sources. The
sYmbol.SourcePATH command group offers various ways of doing this. An introduction to this topic
can be found in “Option and Commands to Get the Correct Paths for the HLL Source Files” in
Training Source Level Debugging, page 9 (training_source_level_debugging.pdf)

- Generated .eca files.

- TRACE32 OS Awareness, if the target application uses an operating system.

2. Exclude alignment padding

After loading the files, ensure that alignment padding is excluded from the code coverage
measurement.

3. Setup TRACE32 for full instrumentation mode

In this mode, the instrumentation probes embedded in the object code (INSTR) serve as the input
data for code coverage analysis.

The following framework can be used for this purpose:

; basic debug and trace setup

; load executable
Data.LOAD.Elf "my_app_full.elf"

; mirror the instrumented executable to the TRACE32 Virtual Memory
; for continuous code coverage only
Data.LOAD.Elf "my_app_targeted.elf" /VM

; load the .eca files
sYmbol.ECA.LOADALL /SkipErrors

; translate the links in 'my_app_full.elf' to point to the original source
; files, allowing to test with the original sources

; adjust the paths to source files in "my_app_full.elf" so that
; they refer to the non-instrumented source files
sYmbol.SourcePATH.Translate "./instrumented_tree" "./original_tree"

; load the OS Awareness if needed
TASK.CONFIG myos.t32

; exclude alignment paddings from code coverage measurement
sYmbol.CLEANUP.AlignmentPaddings

; configure code coverage mode

; don't use conditional branches and, where possible, conditional
; instructions in trace recording for code coverage measurement
sYmbol.ECA.BINary.ControlFlowMode.Trace OFF
Application Note for Trace-Based Code Coverage | 81©1989-2025 Lauterbach

; use instrumentation probes in "my_app_full.elf" for code coverage
; measurement
sYmbol.ECA.BINary.ControlFlowMode.INSTR ON

; perform the static preprocessing for MC/DC, condition and
; decision coverage
sYmbol.ECA.BINary.PROCESS

; everything should be set up to ensure there are no observability gaps,
; but double-check it
IF sYmbol.ECA.BINary.GAPNUMBER()>0.
(
 PRINT sYmbol.ECA.BINary.GAPNUMBER() " observability gaps detected. \
 Please check the remaining observability gaps."
)

Application Note for Trace-Based Code Coverage | 82©1989-2025 Lauterbach

Code Coverage Measurement

This chapter provides detailed instructions for performing the code coverage measurement in then following
variants.

• “Incremental Code Coverage Measurement in Leash Mode”, page 83.

• “Incremental Code Coverage Measurement in STREAM Mode”, page 87.

• “Continuous Code Coverage Measurement in RTS Mode”, page 92.

• “Continuous Code Coverage Measurement in SPY Mode”, page 97.

Incremental Code Coverage Measurement in Leash Mode

Core Principles

Incremental coverage in Leash mode is compatible with all processor architectures that provide program
flow information recorded to a trace buffer, as well as with all TRACE32 configurations (see “Solutions for
Incremental Code Coverage in Leash Mode”, page 62). This method serves as a dependable fallback
solution that can be applied in the vast majority of scenarios.

Measurement Steps

1. Set up the trace recording.

- Configure the trace to Leash Mode via the Trace configuration window or by executing the
command Trace.Mode Leash. This ensures the target halts when the trace buffer is nearly
full, preventing data loss.

- If Leash Mode is unavailable, consider using Stack or FIFO mode.
Application Note for Trace-Based Code Coverage | 83©1989-2025 Lauterbach

- Enable the AutoInit checkbox or use the command Trace.AutoInit ON to clear the trace buffer
before each recording.

2. Set up code coverage.

Open the COVerage configuration window to configure the code coverage. Ensure that the
coverage METHOD INCremental is configured. Alternatively, you can use the
COVerage.METHOD INCremental command to achieve this.

3. Start program execution.

Start program execution and allow it to run until it halts.

4. Calculate code coverage results.

Use the ADD button in the COVerage configuration window or the command COVerage.ADD to
calculate code coverage across all metrics and add the result to the TRACE32 Code Coverage
System. If .eca files were loaded when the code coverage measurement was prepared, the
Application Note for Trace-Based Code Coverage | 84©1989-2025 Lauterbach

command will output warnings regarding any detected observability gaps. These warnings are
relevant only for MC/DC (Modified Condition/Decision Coverage), condition coverage, and decision
coverage; they can be disregarded for other code coverage metrics.

5. Repeat steps 3 and 4.

Continue executing the program and adding results until you have collected sufficient code coverage
data.

6. Export code coverage results.

Use the command COVerage.EXPORT.JSONE to export the code coverage result. The Lauterbach
command-line tool, t32covtool, enables the merging of coverage results taken at different times, with
various builds, and under differing target configurations. Additionally, it can generate an HTML file for
detailed code coverage evaluation in a web browser. For more details, refer to “Code Coverage
Evaluation Outside TRACE32 - t32covtool”, page 107.

7. Evaluate code coverage results in TRACE32.

The code coverage results for the metrics object code and object code-based (OCB) decision
coverage are not exported when using the command COVerage.EXPORT.JSONE. These metrics
must be analyzed and evaluated directly in TRACE32. For more details, see “Code Coverage
Evaluation in TRACE32”, page 110.

However, intermediate results for other code coverage metrics can also be inspected within
TRACE32, see “Evaluation of Intermediate Results”, page 122.

Measurement Script

The code coverage measurement can be automated by creating a PRACTICE script. It is assumed that the
preconditions listed in “Best Practices for Trace Recording”, page 65 are satisfied before running the
script.

// prepare trace recording
Trace.Mode Leash
Trace.AutoInit ON

// perform trace recording and code coverage calculation
COVerage.METHOD INCremental
RePeaT 10.
(
 Go.direct
 WAIT !STATE.RUN()
 COVerage.ADD
)

// export results
COVerage.EXPORT.JSONE coverage_data1.json /NoISTAT

// or view results in TRACE32
// COVerage.Option.SourceMetric <metric>
// COVerage.ListFunc
Application Note for Trace-Based Code Coverage | 85©1989-2025 Lauterbach

Measurement Diagram

This diagram aims to simplify the comparison of various code coverage measurement variants.

A key feature of incremental code coverage is base mode is that individual steps are executed sequentially.
While the program is running, trace information is recorded. After the program is halted, the command
COVerage.ADD ensures that:

• The raw trace data is uploaded to the host computer.

• The raw trace data is decoded to reconstruct the complete program flow.

• Code coverage is calculated based on the recorded program flow and added to the TRACE32
Code Coverage System.

When the code coverage measurement is complete, the results can be exported for further processing and
evaluation.

running

Recording Recording

runningstopped

AddUploading Decoding

stopped

AddUploading Decoding Export

1 21

COVerage.ADD

COVerage.EXPORT.JSONE

1

2

Application Note for Trace-Based Code Coverage | 86©1989-2025 Lauterbach

Incremental Code Coverage Measurement in STREAM Mode

Core Principles

When using TRACE32 trace hardware for recording, it is possible to stream the trace data directly to a file on
the host file system. For more details about the supported TRACE32 Trace Tool solutions and their
maximum streaming rates, refer to “Solutions for Incremental Coverage in STREAM Mode and
Continuous Code Coverage”, page 63.

Streaming trace data to the host computer allows for extended recording durations. However, decoding large
volumes of raw trace data into a program flow trace and calculating the code coverage can be time-
consuming. To address this, TRACE32 offers two alternative methods to optimize the process:

1. Continuous Code Coverage in RTS Mode

RTS mode decodes the trace data and preprocesses it for code coverage calculation during
recording. This method is compatible with all major architectures. For additional details, see
“Continuous Code Coverage Measurement in RTS Mode”, page 92.

2. Continuous Code Coverage in SPY Mode

If RTS mode is not supported for your architecture, SPY mode code coverage is a viable alternative.
For more information, refer to ““Continuous Code Coverage Measurement in SPY Mode”, page
97.
Application Note for Trace-Based Code Coverage | 87©1989-2025 Lauterbach

Measurement Steps

1. Set up the trace recording.

- Set the trace to STREAM Mode either via the Trace Configuration window or via the
Trace.Mode STREAM command.

- Enable the AutoInit checkbox or use the command Trace.AutoInit ON to clear the trace buffer
before each recording.

By default, TRACE32 opens a streaming file in the temporary files directory
(OS.PresentTemporaryDirectory()). Optionally, you can specify a different file using the
Trace.STREAMFILE command. For optimal performance, it is recommended to use the fastest
available drive on the host system. Example:

You can limit the maximum size of the streaming file with the Trace.STREAMFileLimit command.
Example:

The trace recording stops when the streaming file reaches the specified size limit.

Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACE32 to stream only the raw trace data, but no timestamps. For
additional details, refer to the chapter “Disable Timestamps for Trace Streaming”, page 66.

Trace.STREAMFILE "d:\temp\mystream.t32"

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.
Application Note for Trace-Based Code Coverage | 88©1989-2025 Lauterbach

2. Set up code coverage.

- Open the COVerage configuration window to configure the code coverage. Ensure that the
coverage METHOD INCremental is configured. Alternatively, you can use the
COVerage.METHOD INCremental command to achieve this.

3. Start and stop the program execution.

To perform code coverage calculation, the program execution on the target must be stopped. There
are several ways to achieve this:

- The user can manually stop program execution.

- A breakpoint can be set to halt program execution at a specific point.

- Alternatively, a script can be used to stop program execution after a defined period of time.

4. Calculate code coverage results.

Use the ADD button in the COVerage configuration window or the command COVerage.ADD to
calculate code coverage across all metrics and add the result to the TRACE32 Code Coverage
System. If .eca files were loaded when the code coverage measurement was prepared, the
Application Note for Trace-Based Code Coverage | 89©1989-2025 Lauterbach

command will output warnings regarding any detected observability gaps. These warnings are
relevant only for MC/DC (Modified Condition/Decision Coverage), condition coverage, and decision
coverage; they can be disregarded for other code coverage metrics.

5. Export code coverage results.

Use the command COVerage.EXPORT.JSONE to export the code coverage result. The Lauterbach
command-line tool, t32covtool, enables the merging of coverage results taken at different times, with
various builds, and under differing target configurations. Additionally, it can generate an HTML file for
detailed code coverage evaluation in a web browser. For more details, refer to “Code Coverage
Evaluation Outside TRACE32 - t32covtool”, page 107.

6. Evaluate code coverage results in TRACE32.

The code coverage results for the metrics object code and object code-based (OCB) decision
coverage are not exported when using the command COVerage.EXPORT.JSONE. These metrics
must be analyzed and evaluated directly in TRACE32. For more details, see “Code Coverage
Evaluation in TRACE32”, page 110.

However, intermediate results for other code coverage metrics can also be inspected within
TRACE32, see “Evaluation of Intermediate Results”, page 122.

Measurement Script

The code coverage measurement can be automated by creating a PRACTICE script. It is assumed that the
preconditions listed in “Best Practices for Trace Recording”, page 65 are satisfied before running the
script.

// prepare trace recording
Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.AutoInit ON

Trace.PortFilter MAX
// perform trace recording and code coverage calculation
Go
WAIT 10.s
Break
COVerage.ADD

// export results
COVerage.EXPORT.JSONE coverage_data1.json /NoISTAT

// or view results in TRACE32
// COVerage.Option.SourceMetric <metric>
// COVerage.ListFunc
Application Note for Trace-Based Code Coverage | 90©1989-2025 Lauterbach

Measurement Diagram

This diagram aims to simplify the comparison of various code coverage measurement variants.

Incremental code coverage in streaming mode is exclusively available when using TRACE32 trace
hardware. This configuration enables the recording of substantially more trace data during a single test run.
However, it’s essential to recognize that the streaming rate has an upper limit.

During program execution, trace information is recorded and streamed to the host computer. Once the
program is halted, the COVerage.ADD command performs the following tasks:

• Decodes the raw trace data to reconstruct the complete program flow.

• Calculates code coverage from the recorded program flow and add it into the TRACE32 Code
Coverage System.

For long recordings, the COVerage.ADD command can take a significant amount of time to complete.

After the code coverage measurement is finalized, the results can be exported for further processing and
evaluation.

running stopped

Recording

Streaming

Decoding Add ExportAdd

COVerage.ADD

COVerage.EXPORT.JSONE

1

2

1 2
Application Note for Trace-Based Code Coverage | 91©1989-2025 Lauterbach

Continuous Code Coverage Measurement in RTS Mode

Core Principles

Continuous Code Coverage in RTS Mode calculates code coverage during trace recording, delivering
complete results in the TRACE32 Code Coverage system immediately after program execution halts. Since
trace data is typically discarded after code coverage calculation, the measurement time is not limited.
However, if trace data needs to be saved for diagnostic purposes, storage space is required, which may
impose a restriction on recording time.

This mode, however, is limited to specific processor architectures and trace protocols, including:

• Arm ETMv3, PTM, and Arm ETMv4

• Nexus for MPC5xxx and QorIQ

• TriCore MCDS

If RTS is not supported for your architecture, SPY Mode Code Coverage may serve as an alternative. For
details, see “Continuous Code Coverage Measurement in SPY Mode”, page 97.

RTS requires a TRACE32 trace hardware. Additionally, trace data must be streamed to the host file system
without issues. For more information on trace streaming requirements, refer to the Trace.Mode STREAM
command description.

Measurement Steps

1. Setup RTS.

- To calculate code coverage during recording, it is essential to prepare the process thoroughly
in advance to ensure the required performance. Two conditions must be fulfilled.

A. As part of the preparation for continuous code coverage, the object code was already be loaded
into the TRACE32 Virtual Memory. Refer to the section “Steps in Preparation for Code Coverage
Measurement”, page 68 for more details.

B. Static preprocessing for code coverage calculation must now be performed using the
sYmbol.ECA.BINary.PROCESS command.
Application Note for Trace-Based Code Coverage | 92©1989-2025 Lauterbach

- Switch the RTS system to ON in the RTS.state window or with the help of the RTS.ON
command.

2. Start and stop the program execution.

3. Export code coverage results.

Use the command COVerage.EXPORT.JSONE to export the code coverage result. The Lauterbach
command-line tool, t32covtool, enables the merging of coverage results taken at different times, with
various builds, and under differing target configurations. Additionally, it can generate an HTML file for
detailed code coverage evaluation in a web browser. For more details, refer to “Code Coverage
Evaluation Outside TRACE32 - t32covtool”, page 107.

4. Evaluate code coverage results in TRACE32.

The code coverage results for the metrics object code and object code-based (OCB) decision
coverage are not exported when using the command COVerage.EXPORT.JSONE. These metrics
must be analyzed and evaluated directly in TRACE32. For more details, see “Code Coverage
Evaluation in TRACE32”, page 110.

However, intermediate results for other code coverage metrics can also be inspected within
TRACE32. In RTS mode, you can even inspect intermediate results while trace recording is ongoing.
Instead of waiting until the code coverage evaluation to identify unexecuted code paths and initiate
additional measurements, users can inspect critical points during the measurement process and take
immediate action—such as stimulating the system—to ensure and verify that the code is executed.
For details refer to “Evaluation of Intermediate Results”, page 122.

By default, the trace data is discarded after calculating code coverage. To save it for diagnostic purposes,
insert the following before step 1.

- Set the trace to STREAM Mode either via the Trace Configuration window or via the
Trace.Mode STREAM command.
Application Note for Trace-Based Code Coverage | 93©1989-2025 Lauterbach

- Enable the AutoInit checkbox or use the command Trace.AutoInit ON to clear the trace buffer
before each recording.

By default, TRACE32 opens a streaming file in the temporary files directory
(OS.PresentTemporaryDirectory()). Optionally, you can specify a different file using the
Trace.STREAMFILE command. For optimal performance, it is recommended to use the fastest
available drive on the host system. Example:

You can limit the maximum size of the streaming file with the Trace.STREAMFileLimit command.
Example:

The trace recording stops when the streaming file reaches the specified size limit.

Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACE32 to stream only the raw trace data, but no timestamps. For
additional details, refer to the chapter “Disable Timestamps for Trace Streaming”, page 66.

Trace.STREAMFILE "d:\temp\mystream.t32"

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.
Application Note for Trace-Based Code Coverage | 94©1989-2025 Lauterbach

Measurement Script

The code coverage measurement can be automated by creating a PRACTICE script. It is assumed that the
preconditions listed in “Best Practices for Trace Recording”, page 65 are satisfied before running the
script

Use this setup only if you need the trace recording for diagnostic purposes.

Here the standard script for continuous code coverage in RTS mode.

Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

// prepare RTS mode
sYmbol.ECA.BINary.PROCESS
RTS.ON

Go
WAIT 10.s
Break

// export results
COVerage.EXPORT.JSONE coverage_data1.json /NoISTAT

// or view results in TRACE32
// COVerage.Option.SourceMetric <metric>
// COVerage.ListFunc
Application Note for Trace-Based Code Coverage | 95©1989-2025 Lauterbach

Measurement Diagram

This diagram aims to simplify the comparison of various code coverage measurement variants.

The key advantage of RTS mode code coverage is that all steps are executed in parallel. This enables
the rapid processing of large volumes of trace data, with code coverage results available immediately
after program execution stops.

The following steps are performed concurrently with the trace recording:

• Raw trace data is streamed to the host computer, with the option to save it to a streaming file.

• The raw trace data are decoded to reconstruct the program flow

• Code coverage is calculated.

• The code coverage results are added to the TRACE32 Coverage System.

Decoding

Recording

Streaming

RTS Decoding

Add

running stopped

Export

COVerage.EXPORT.JSONE

11

1

Application Note for Trace-Based Code Coverage | 96©1989-2025 Lauterbach

Continuous Code Coverage Measurement in SPY Mode

Core Principles

Continuous Code Coverage in SPY Mode calculates code coverage during trace recording and
provides complete results in the TRACE32 Code Coverage System after a brief post-processing delay
once program execution stops.

SPY Mode requires a TRACE32 trace hardware. Additionally, trace data must be streamed to the host file
system without issues. For more information on trace streaming requirements, refer to the Trace.Mode
STREAM command description.

The key concept is to periodically interrupt trace streaming to calculate intermediate code coverage results,
which slightly reduces the available bandwidth for trace streaming. The current trace state switches between
Arm and SPY.

• Arm: Trace data is recorded and streamed to the streaming file on the host computer.

• SPY: Trace data is recorded while the content of the streaming file is processed for code
coverage.

Note that TRACE32 does not suspend trace streaming unless the trace memory of the TRACE32 trace tool,
acting as a large FIFO, is less than 50% full.

The Trace field of the TRACE32 state line
switches between Arm and SPY
Application Note for Trace-Based Code Coverage | 97©1989-2025 Lauterbach

Measurement Steps

1. Setup SYP mode.

- To calculate code coverage during recording, it is essential to prepare the process thoroughly
in advance to ensure the required performance. Two conditions must be fulfilled.

A. As part of the preparation for continuous code coverage, the object code was already be loaded
into the TRACE32 Virtual Memory. Refer to the section “Steps in Preparation for Code Coverage
Measurement”, page 68 for more details.

B. Static preprocessing for code coverage calculation must now be performed using the
sYmbol.ECA.BINary.PROCESS command.

- Set the trace to STREAM Mode either via the Trace Configuration window or via the
Trace.Mode STREAM command.

- Enable the AutoInit checkbox or use the command Trace.AutoInit ON to clear the trace buffer
before each recording.

By default, TRACE32 opens a streaming file in the temporary files directory
(OS.PresentTemporaryDirectory()). Optionally, you can specify a different file using the
Trace.STREAMFILE command. For optimal performance, it is recommended to use the fastest
available drive on the host system. Example:

Trace.STREAMFILE "d:\temp\mystream.t32"
Application Note for Trace-Based Code Coverage | 98©1989-2025 Lauterbach

You can limit the maximum size of the streaming file with the Trace.STREAMFileLimit command.
Example:

The trace recording stops when the streaming file reaches the specified size limit.

Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACE32 to stream only the raw trace data, but no timestamps. For
additional details, refer to the chapter “Disable Timestamps for Trace Streaming”, page 66.

- Set the coverage method to SPY by using the command COVerage.METHOD SPY or by
selecting SPY in the COVerage configuration window.

- Enable SPY mode code coverage by the command COVerage.ON or by selecting the ON
radio button in the state field.

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.
Application Note for Trace-Based Code Coverage | 99©1989-2025 Lauterbach

2. Start and stop the program execution.

3. Export code coverage results.

Use the command COVerage.EXPORT.JSONE to export the code coverage result. The Lauterbach
command-line tool, t32covtool, enables the merging of coverage results taken at different times, with
various builds, and under differing target configurations. Additionally, it can generate an HTML file for
detailed code coverage evaluation in a web browser. For more details, refer to “Code Coverage
Evaluation Outside TRACE32 - t32covtool”, page 107.

4. Evaluate code coverage results in TRACE32.

The code coverage results for the metrics object code and object code-based (OCB) decision
coverage are not exported when using the command COVerage.EXPORT.JSONE. These metrics
must be analyzed and evaluated directly in TRACE32. For more details, see “Code Coverage
Evaluation in TRACE32”, page 110.

However, intermediate results for other code coverage metrics can also be inspected within
TRACE32. In SPY mode, you can even inspect intermediate results while trace recording is ongoing.
Instead of waiting until the code coverage evaluation to identify unexecuted code paths and initiate
additional measurements, users can inspect critical points during the measurement process and take
immediate action—such as stimulating the system—to ensure and verify that the code is executed.
For details refer to “Evaluation of Intermediate Results”, page 122.

Measurement Script

The code coverage measurement can be automated by creating a PRACTICE script. It is assumed that the
preconditions listed in “Best Practices for Trace Recording”, page 65 are satisfied before running the
script.

// prepare SPY mode
Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

COVerage.METHOD SPY
COVerage.ON

sYmbol.ECA.BINary.PROCESS

Go
WAIT 10.s
Break

// export results
COVerage.EXPORT.JSONE coverage_data1.json /NoISTAT

// or view results in TRACE32
// COVerage.Option.SourceMetric <metric>
// COVerage.ListFunc
Application Note for Trace-Based Code Coverage | 100©1989-2025 Lauterbach

Measurement Diagram

This diagram aims to simplify the comparison of various code coverage measurement variants.

SPY Mode Code Coverage can process trace data concurrently while recording. However, it does not
achieve the same processing speeds as RTS mode code coverage.

The following steps are involved:

• Trace information is recorded continuously.

• The raw trace data is streamed to a file on the host computer, but the streaming is periodically
suspended:

- to decode the raw trace data to reconstruct the program flow

- to calculate the code coverage and add the results to the TRACE32 Code Coverage System

TRACE32 dynamically adjusts the periodic suspension of trace streaming to ensure a gap-free trace while
processing as much raw trace data as possible.

Decoding

running

Recording

Streaming Streaming Streaming

Decoding Add

Legend:

stopped

partial partial

Export

1

COVerage.EXPORT.JSONE1

final processing
Application Note for Trace-Based Code Coverage | 101©1989-2025 Lauterbach

Code Coverage with Virtual Targets

Tracing the program execution on a virtual target slows down its performance. To minimize this impact,
Lauterbach works closely together with manufacturers such as Synopsys. The basic idea is that some parts
of the code coverage processing are offloaded to the virtual target. This information is uploaded to the
TRACE32 code coverage system with the command COVerage.ADD after the program execution has been
stopped. The MCD interface comes with built-in support for this.

 To use this feature the following conditions must be met:

• PBI=MCD must be specified in the TRACE32 configuration file, usually ~~/config.t32.

• The Virtual Target must support program address tagging.

COVerage.Mode FastCOVerage ON must be set. If the Virtual Target does not support program
address tagging, TRACE32 will display the error message “function not implemented”.

The program addressed tagged in the virtual target can be used for:

• Object code coverage (see “Object Code Coverage”, page 110)

• Decision coverage (ocb) (see “Object Code Based (ocb) Decision Coverage”, page 116)
Application Note for Trace-Based Code Coverage | 102©1989-2025 Lauterbach

https://www.lauterbach.com/products/software/debugger-for-simulators/mcd-api

An example script might look like this:

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation
Outside TRACE32 - t32covtool”, page 107.

COVerage.RESet
COVerage.METHOD INCremental
COVerage.Mode FastCOVerage ON

Go

; Use a breakpoint or time-out to control length of runtime

Break

COVerage.Add

COVerage.ListFunc
Application Note for Trace-Based Code Coverage | 103©1989-2025 Lauterbach

ART Mode Code Coverage

ART is an acronym for Advanced Register Trace. The ART trace operates by single stepping on assembler
level. After each step, the contents of the CPU registers are uploaded to TRACE32 and stored in a similar
fashion as a program flow trace.

This pseudo-trace data can be used for code coverage. This is not supported for all processor architectures.
The Coverage.METHOD ART can only be selected if supported. Please be aware that ART has a
significant impact on the real-time performance of the target. Each step takes 5 to 10 ms.

Trace data recorded with ART can be used for:

• Object code coverage (see “Object Code Coverage”, page 110)

• Decision coverage (ocb) (see “Object Code Based (ocb) Decision Coverage”, page 116)

Where possible, it is recommended to use the TRACE32 Instruction Set Simulator with Trace.METHOD
Analyzer instead of ART. This has a better performance and supports all code coverage metrics.

The TRACE32 Instruction Set Simulator simulates the instruction set, but does not model timing
characteristics and peripherals. However, the simulator provides a bus trace so that code coverage is easy
to perform. For details on how to start the TRACE32 Instruction Set Simulator refer to “Section
PBI=<driver>” in TRACE32 Installation Guide, page 48 (installation.pdf).
Application Note for Trace-Based Code Coverage | 104©1989-2025 Lauterbach

Data Collection

Before you start do not forget to switch debugging to mixed or assembler mode by using the Mode.Asm or
Mode.Mix commands.

1. Select Trace.METHOD ART in the Trace configuration window.

2. Set the size of the ART buffer, using either the command ART.SIZE <n> or by entering the value
in the SIZE field of the Trace configuration window.

3. Set COVerage.METHOD ART in the COVerage configuration window.

4. Enable ART code coverage with COVerage.ON.
Application Note for Trace-Based Code Coverage | 105©1989-2025 Lauterbach

5. Open a COVerage.ListFunc window, single step the target and observe the result.

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation
Outside TRACE32 - t32covtool”, page 107.

Example Script

A simple example is shown below.

Mode.Mixed

Trace.RESet
Trace.METHOD ART
Trace.SIZE 65535. ; Set the size of the ART buffer

COVerage.RESet
COVerage.METHOD ART
COVerage.ON

Step 65534. ; Single step on assembler level to capture data
COVerage.ListFunc ; Open a Window to see results
Application Note for Trace-Based Code Coverage | 106©1989-2025 Lauterbach

Code Coverage Evaluation Outside TRACE32 - t32covtool

Typically, code coverage is not measured in a single test pass, but is approached gradually. This creates the
need for:

• saving the results from single test passes.

• merging the saved results and/or to generate an overall report.

As already described, the COVerage.EXPORT.JSONE command allows you to export information on the
functions and source code lines from the code coverage system to a JSON file. Lauterbach offers the
command line tool t32covtool to merge the exported results and/or create an overall report. t32covtool runs
on Windows and Linux.

The command line tool t32covtool and its options.

t32covtool can be used for the source metrics statement, full decision,
condition coverage, MC/DC as well as call and function coverage.

It cannot process object code metrics and is therefore not suitable for object
code and object code based decision coverage.

t32covtool <options> <input>

-f
--force-overwrite

Optional, overwrite output directory if existing.

-h
--help

Print help.

-j
--output-json <file>

Merge JSON files into a summary JSON file.

-l
--filelist <file>

The <input> to t32covtool can be either a number of JSON files or a
.txt file containing a list of JSON files (option --filelist). Using a .txt file
is particularly recommended when there are many JSON files. In the
.txt file, each JSON file should be listed on a separate line, as shown
in the example.
Application Note for Trace-Based Code Coverage | 107©1989-2025 Lauterbach

Example 1

Generate an HTML report
- specify the source metric decision.
- specify report_24 as output directory, advise t32covtool to overwrite the directory if it already exists.
- specify the input files.

Example 2

Generate an HTML report
- specify the source metric statement.
- specify report_24 as output directory, advise t32covtool to overwrite the directory if it already exists.
- specify jsone_list.txt that include list of input files.

Example 3

Generate an html report and a summary JSON file
- specify the source metric decision.
- specify report_24 as output directory, advise t32covtool to overwrite the directory if it already exists.
- specify the files name for the accumulated JSON.
- specify jsone_list.txt that include list of input files.

-m
--source-metric <metric>

Choose source code metric for report. Supported metrics are:
statement, decision, condition, mcds, call, function

-o <dir>
--outputdir <dir>

Optional, set output directory.

-v
--version

Print version.

t32covtool --source-metric decision
--outputdir report_24 --force-overwrite
export_unittest1.json export_unittest2.json export_unittest3.json

t32covtool --source-metric statement
--outputdir report_24 --force-overwrite
--filelist jsone_list.txt

t32covtool --source-metric decision
--outputdir report_24 --force-overwrite --output-json sum.json
--filelist jsone_list.txt
Application Note for Trace-Based Code Coverage | 108©1989-2025 Lauterbach

Example 4

Generate an accumulated JSON file.
- specify the files name for the accumulated JSON.
- specify jsone_list.txt that include list of input files.

You can find a sample script for using the command line tool t32covtool at
~~/demo/coverage/merge_demo/merge_unittests/demo.cmm.

t32covtool --output-json sum.json
--filelist jsone_list.txt
Application Note for Trace-Based Code Coverage | 109©1989-2025 Lauterbach

Code Coverage Evaluation in TRACE32

The two object code-based code coverage metrics – object code coverage and object code based (ocb)
decision coverage – need to be evaluated in TRACE32. Other source code based code coverage metrics
should preferably be evaluated outside of TRACE32 using a web browser.

In certain cases, it can be useful to evaluate the results of the current measurement directly in TRACE32 for
metrics such as statement coverage, decision coverage, condition coverage, MC/DC, call coverage, and
function coverage. This is particularly helpful for determining whether specific source code sections of
interest were executed in the current measurement. Instead of exporting, post-processing, and analyzing
coverage results in a web browser, TRACE32 enables direct evaluation, saving time. Additionally, it provides
insights into how source level coverage relates to the execution of the underlying object code.

Object Code Coverage

Object code coverage: Object code coverage ensures that each object code instruction was executed at
least once and all conditional instructions (e.g. conditional branches) have evaluated to both true and false.

There are two tagging schemes:

• ok | only exec | not exec | never

This is the tagging scheme for all trace protocols that provide details on the execution of conditional
branches and conditional instructions. Refer also to the COVerage.INFO command. Currently, this
tagging scheme is used only for Arm/Cortex cores with Arm-ETMv1 or Arm-ETMv3 protocols, as well
as Arm-ETMv4 with ETM.COND ALL.

• ok | taken | not taken | never

This tagging scheme is used by all trace protocols that provide details solely on the execution of
conditional branches. It is currently applied by most core architectures.

For details refer to “Appendix G: Object Code Coverage Tags in Detail”, page 146.
Application Note for Trace-Based Code Coverage | 110©1989-2025 Lauterbach

Evaluation

The TRACE32 Code Coverage System provides results for all metrics. To evaluate code coverage for the
ObjectCode metric in TRACE32, select SourceMetric ObjectCode in the COVerage configuration
window or use the command: COVerage.Option SourceMetric ObjectCode.

The following commands provide a tabular analysis:

The following command displays tagging at both the source code and object code levels:

COVerage.ListModule

COVerage.ListFunc

COVerage.ListLine

List.Mix /COVerage
Application Note for Trace-Based Code Coverage | 111©1989-2025 Lauterbach

This TRACE32 command displays tagging for the MultiLine function, applying the ObjectCode metric:

The preceding screenshot was taken using the Infineon TriCore™ debugger. Its instruction set only supports
conditional branches, but does not include conditional instructions. As a result, the following tagging is used
for the ObjectCode metric:

List.Mix MultiLine /COVerage

ok The object code instruction is considered fully covered.

If the instruction is a conditional branch, it is tagged as ok if it has
been both taken and not taken at least once.

All other object code instructions are tagged as ok if they have been
executed at least once.

never The object code instruction has never been executed.

taken If the object code is a conditional branch, it is tagged as taken if it has
been taken at least once but never not taken.

not taken If the object code is a conditional branch, it is tagged as not taken if it
has been not taken at least once but never taken.
Application Note for Trace-Based Code Coverage | 112©1989-2025 Lauterbach

This TRACE32 command provides a tabular analysis of all functions within the 'coverage' module. Typically,
a module corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 113©1989-2025 Lauterbach

Further details are displayed if you open the window in its full size:

Conditional branches

branches Percentage calculated according to the
following formula:

ok Number of conditional branches that are both
taken and not taken

taken Number of conditional branches that are only
taken

not taken Number of conditional branches that are only
not taken

never Number of conditional branches that are
neither taken nor not taken

Byte count

bytes Number of bytes

ok Number of bytes that are already tagged as ok

2 ok taken nottaken+ +
2 ok taken nottaken never+ + + 

Application Note for Trace-Based Code Coverage | 114©1989-2025 Lauterbach

Example Script

// Demo script "~~/demo/coverage/mcdc/measure_mcdc.cmm"

// Select code coverage metric ObjectCode
COVerage.Option SourceMetric ObjectCode

// List code coverage results at source and object code level
List.Mix MultiLine /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 115©1989-2025 Lauterbach

Object Code Based (ocb) Decision Coverage

Lauterbach no longer officially recommends this metric. However, it may still be useful for addressing
specific issues. If such a situation occurs, our support team will recommend this metric to you.

Decision coverage: Every point of entry and exit in the program has been invoked at least once and every
decision in the program has taken on all possible outcomes at least once.

TRACE32 Interpretation: ocb decision coverage for a source code line is achieved when all object code
instructions generated from that line are tagged as ok.

However, the following should be taken into account:

Unoptimized code may lead to false negatives, where decisions are marked as incomplete even though
decision coverage has already been achieved. This means that ocb decision coverage might require more
test cases than full decision coverage.

Optimized code may lead to false positives if a condition is no longer represented by a conditional
branch/instruction or if the trace protocol does not provide information about the execution of conditional
instructions. A false positive means that decision coverage is indicated too early.

Since the source code is not analyzed for ocb decision coverage, TRACE32 does not know where decisions
are located. Therefor source code lines are tagged as follows:

• stmt+dc | incomplete
Application Note for Trace-Based Code Coverage | 116©1989-2025 Lauterbach

Evaluation

The TRACE32 code coverage system provides results for all metrics. To evaluate code coverage using the
ocb decision coverage metric in TRACE32, select SourceMetric Decision in the COVerage configuration
window or use the command: COVerage.Option SourceMetric Decision. It is not possible to specifically
select ocd decision coverage in TRACE32. Instead, TRACE32 automatically applies it if no .eca data was
loaded during the preparation for code coverage measurement.

The following commands provide a tabular analysis:

Use the following command to display source code tagging:

COVerage.ListModule

COVerage.ListFunc

List.Hll /COVerage
Application Note for Trace-Based Code Coverage | 117©1989-2025 Lauterbach

This TRACE32 command displays the ocb decision coverage tagging for the function ComplexDoWhile:

Source code lines are tagged as follows:

Object code instructions receive ObjectCode tagging when ocb decision coverage is applied.

List.HLL ComplexDoWhile /COVerage

stmt+dc The source code line has achieved full object code coverage, ensuring
either decision or statement coverage.

incomplete The source code line has not achieved full object code coverage, so it
cannot be determined whether statement or decision coverage has
been met.
Application Note for Trace-Based Code Coverage | 118©1989-2025 Lauterbach

This TRACE32 command provides a tabular analysis of all functions within the 'coverage' module. Typically,
a module corresponds to a source code file.

Tags for Object Code Based (ocb) Decision Coverage

• stmt+dc: All source code lines of the function/module are tagged with stmt+dc.

• incomplete: At least one source code line of the function/module is tagged with incomplete.

COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 119©1989-2025 Lauterbach

Further details are displayed when you open the window in its full size:

Line count

lines Number of source code lines within the
function/module

ok Number of source code lines tagged with
stmt+dc

Byte count

bytes Number of bytes within the function/module

ok Number of bytes tagged with stmt+dc
Application Note for Trace-Based Code Coverage | 120©1989-2025 Lauterbach

Example Script

// Demo script "~~/demo/coverage/mcdc/measure_mcdc.cmm"

// Select code coverage metric decision
COVerage.Option SourceMetric Decision

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 121©1989-2025 Lauterbach

Evaluation of Intermediate Results

For metrics such as statement coverage, full decision coverage, condition coverage, MC/DC, as well as call
and function coverage, the results of various code coverage measurements can only be merged and
prepared for evaluation in a web browser outside of TRACE32 using the Lauterbach command line tool,
t32covtool. However, you can always evaluate the results of a single code coverage measurement directly in
TRACE32 if needed. In this context, we refer to this as an intermediate result obtained after the
completion of a single measurement.

If you use continuous code coverage, you can display intermediate results during trace recording. In this
case, we refer to these as intermediate results obtained during a single measurement.

To inspect intermediate results, proceed as follows:

1. Select the desired code coverage metric.

The TRACE Code Coverage System includes results for all available metrics. You can select the
metric you are interested in either from the COVerage configuration window or by using the
command COVerage.Option.SourceMetric <metric>. For example, to use the MC/DC metric, the
command would be COVerage.Option.SourceMetric MCDC.

2. Get an overview of the code coverage for all function.

Use the ListFunc button in the COVerage configuration window or the command
COVerage.ListFunc to get your overview.
Application Note for Trace-Based Code Coverage | 122©1989-2025 Lauterbach

3. Drill down into the details of a specific function.

Double-click the function you are interested in, or use the command
List.Hll <func_name> /COVerage to view the details.
Application Note for Trace-Based Code Coverage | 123©1989-2025 Lauterbach

Comment Your Results

Address-based bookmarks can be used to comment not covered code ranges, which are fine but not
testable in the current system configuration.
Application Note for Trace-Based Code Coverage | 124©1989-2025 Lauterbach

List all bookmarks:

The current bookmarks can be saved to a file and reloaded later on.

BookMark.List

STOre <file> BookMark
Application Note for Trace-Based Code Coverage | 125©1989-2025 Lauterbach

Appendix A: TRACE32 Coverage Report Utility

After the code coverage measurement is completed, a code coverage report has to be generated in order to
document the results. TRACE32 includes a Coverage Report Utility for this purpose.

Choose Create Report... in the Cov menu to open the TRACE32 Coverage Report Utility.

Push the Create Report button to generate a standard report.

The implementation of the dialog can be found in the following PRACTICE script:
"~~/demo/coverage/multi_file_report/create_report.cmm".

The comments in the script contain information against which browsers the script was tested and which
additional setting might be necessary. It is recommended to read this in advance.

PEDIT ~~/demo/coverage/multi_file_report/create_report.cmm
Application Note for Trace-Based Code Coverage | 126©1989-2025 Lauterbach

If you start the script with parameters, the script is directly executed.

Note

For larger projects it is recommended to copy the object code into the TRACE32 Virtual Memory. This
makes the creation of the report faster. Here a short script example.

If you use dynamic memory management (MMU) with SYStem.Option MMUSPACES ON, the following
command sequence is recommended:

CD.DO ~~/demo/coverage/multi_file_report/create_report.cmm \
"manual" "SYMBOL" "\coverage" \
"METRIC=DECISION EXISTING=REPLACE COMPRESSION=2"

Data.Load.elf my_project /VM ; Load your code again, this time
; into the TRACE32 Virtual Memory.

Trace.ACCESS VM ; Advise TRACE32 to use the code
; loaded to the TRACE32 Virtual
; Memory for trace decoding

… ; Create your report

Trace.ACCESS auto ; Reset the TRACE.ACCESS to its
; default

TRANSlation.SHADOW ON ; Allow several address spaces
; in TRACE32 Virtual Memory

Data.LOAD.Elf my_project 0x2::0 /VM ; Load your code again, e.g. to
; space ID 0x2, this time into
; the TRACE32 virtual memory

Trace.ACCESS VM ; Advise TRACE32 to use the code
; loaded to the TRACE32 Virtual
; Memory for trace decoding

… ; Create your report

Trace.ACCESS auto ; Reset the TRACE.ACCESS to its
; default

TRANSlation.SHADOW OFF ; Reset TRANSlation.SHADOW to
; its default
Application Note for Trace-Based Code Coverage | 127©1989-2025 Lauterbach

Appendix B: Merge Multiple Object Code Based Measurements

There are two ways to assemble multiple test runs.

• Save and reload the data content of the code coverage system

• Save and reload the complete trace information

Save and Restore Code Coverage Measurement

To assemble the results from several test runs, you can use:

• Your TRACE32 debug and trace tool connected to your target hardware.

• Alternatively you can use a TRACE32 Instruction Set Simulator (see “Section PBI=<driver>” in
TRACE32 Installation Guide, page 48 (installation.pdf)).

Before you load an acd file into TRACE32 with the following command you need to make sure, that:

• the test executable has been loaded into memory

• the debug symbol information for the test executable has been loaded

• if needed for the selected code coverage metric, .eca files are loaded

NOTE: Please make sure that you only merge code coverage measurements that were
carried out with the identical executable(s).

COVerage.SAVE <file> This command saves the following data in the specified <file>:
object code coverage tagging based on addresses
the MC/DC status of all conditions based on their addresses

The default extension is .acd (Analyzer Coverage Data).

COVerage.LOAD <file> /Replace Load coverage data from <file> into the TRACE32 code
coverage system. All existing coverage data is cleared.

COVerage.LOAD <file> /Add Add coverage data from <file> to the TRACE32 code
coverage system.
Application Note for Trace-Based Code Coverage | 128©1989-2025 Lauterbach

Example script

Save data content of the code coverage system:

Assemble coverage data from several test runs:

COVerage.SAVE testrun1.acd

...

COVerage.SAVE testrun2.acd

...

... ; Basic setups

Data.LOAD.Elf jpeg.elf ; Load code into memory and
; debug info into TRACE32

// sYmbol.ECA.LOADALL /SkipErrors ; Load .eca files if needed

COVerage.LOAD testrun1.acd /Replace

COVerage.LOAD testrun2.acd /Add

...

COVerage.Option SourceMetric Statement ; Specify code coverage metric

...

COVerage.ListFunc ; Display code coverage for
; all functions
Application Note for Trace-Based Code Coverage | 129©1989-2025 Lauterbach

Save and Restore Trace Recording

Saving the trace buffer contents enables you to re-examine your tests in detail any time.

To assemble the results from several test runs, you can use:

• Your TRACE32 debug and trace tool connected to your target hardware.

• Alternatively you can use a TRACE32 Instruction Set Simulator (see “Section PBI=<driver>” in
TRACE32 Installation Guide, page 48 (installation.pdf)).

In either case you need to make sure, that the debug symbol information for the test executable has been
loaded into TRACE32 PowerView.

Example script

Save trace buffer contents of several tests to files.

Reload saved trace buffer contents and add them to the code coverage system.

Trace.SAVE <file> Save trace buffer contents to <file>.

Trace.LOAD <file> Load trace information from <file> to TRACE32.

The default extension is .ad (Analyzer Data).

COVerage.ADD Add loaded trace information into the TRACE32 code
coverage system.

Trace.SAVE test1.ad

...

Trace.SAVE test2.ad

...

... ; Basic setups

Data.LOAD.Elf jpeg.elf ; Load debug info into TRACE32

// sYmbol.ECA.LOADALL /SkipErrors ; Load .eca files if needed

Trace.LOAD test1.ad ; Load trace information from
; file
Application Note for Trace-Based Code Coverage | 130©1989-2025 Lauterbach

COVerage.ADD ; add the trace information
; into code coverage system

Trace.LOAD test2.ad ; load trace information from
; next file

COVerage.ADD ; add the trace information
; into code coverage system

...

COVerage.Option SourceMetric Statement ; specify code coverage metric

COVerage.ListFunc ; Display coverage for all
; functions

...

Trace.LOAD test2.ad
Trace.List

; load trace information from
; file for detailed
; re-examination
Application Note for Trace-Based Code Coverage | 131©1989-2025 Lauterbach

Appendix C: Assembler-Only Functions and Code Coverage

Object Code Coverage

Code that is not part of a source code function is discarded for the object code coverage. If you want to
include this code you have to assign a function name to it:

The manually created functions are assigned to the \\User\Global module.

The object code lines of the assembler functions are marked with the same tags as the object code lines of
source code functions.

sYmbol.INFO <symbol> Display details about a debug symbol.

sYmbol.RANGE(<symbol>) Returns the address range used by the
specified symbol.

sYmbol.NEW.Function <name> <addressrange> Create a function.

sYmbol.NEW.Function t32__malloc sYmbol.RANGE(__malloc)

sYmbol.NEW.Function t32__insert sYmbol.RANGE(__insert)
Application Note for Trace-Based Code Coverage | 132©1989-2025 Lauterbach

Source Code Metrics

Code that is not part of a source code function is discarded for coverage. If you want to include this code you
have to assign a function to it:

Functions created with the sYmbol.NEW.Function command are grouped under the module name
\\User\Global. No address range is assigned to this module. Alternatively, several functions can be
aggregated under a newly created module. An address range has to be assigned to the new module
\\Global\<name> when it is created and it then includes all functions that are located within its address
range.

Depending on the selected source code metric, the assembler functions or the modules are tagged as
follows:

sYmbol.INFO <symbol> Display details about a debug symbol.

sYmbol.RANGE(<symbol>) Returns the address range used by the
specified symbol.

sYmbol.NEW.Function <name> <addressrange> Create a function.

sYmbol.NEW.Module <name> <addressrange> Create a module.

sYmbol.INFO __malloc

sYmbol.INFO __insert

sYmbol.NEW.Module t32_module P:0x000131cc--0x00134db

sYmbol.NEW.Function t32__malloc sYmbol.RANGE(__malloc)

sYmbol.NEW.Function t32__insert sYmbol.RANGE(__insert)

Metric Tag Description

all source code
metrics

incomplete At least one assembler line within the function
is tagged with never, taken or not taken.

Statement stmt All assembler lines are tagged with ok.
Application Note for Trace-Based Code Coverage | 133©1989-2025 Lauterbach

Decision stmt+dc All assembler lines are tagged with ok.

CONDition stmt+cc All assembler lines are tagged with ok.

MCDC stmt+mc/dc All assembler lines are tagged with ok.

Function func All assembler lines are tagged with ok.

Call call All assembler lines are tagged with ok.

Metric Tag Description
Application Note for Trace-Based Code Coverage | 134©1989-2025 Lauterbach

Appendix D: Data Coverage

Trace Data Collection

Since off-chip trace ports usually do not have enough bandwidth to make all read/write accesses (and the
program flow) visible, they are rather unsuitable for data coverage. For test phases in which testing in the
target environment is not yet required, a TRACE32 Instruction Set Simulator can be used well for data
coverage.

Since TRACE32 Instruction Set Simulators provide full program and data flow trace based on a bus trace
protocol, no special setup is required.

If you want to use an onchip trace or an offchip trace port for data tracing, please refer to the following
documents for setup details:

• Arm: “Training Cortex-M Tracing” (training_cortexm_etm.pdf)

• MPC5xxx/SPC5xxx, QorIQ and RH850: “Training MPC5xxx/SPC5xx Nexus Tracing”
(training_nexus_mpc5500.pdf)

• For other processor architectures, please refer to the corresponding “Processor Architecture
Manuals”.

Please note that data coverage only makes sense if the trace does not contain a high number of TARGET
FIFO OVERFLOWS.

It is recommended to use incremental coverage for data coverage (see “Incremental Code Coverage
Measurement in Leash Mode”, page 83).
Application Note for Trace-Based Code Coverage | 135©1989-2025 Lauterbach

Evaluation

If you want to use the trace data stored in the coverage system for data coverage, select the SourceMetric
ObjectCode in the COVerage configuration window or use the command
COVerage.Option SourceMetric ObjectCode.

The following commands show a tabular analysis:

The following command shows the tagging per address.

COVerage.List

COVerage.ListVar

Data.View %Var <address> /COVerage
Application Note for Trace-Based Code Coverage | 136©1989-2025 Lauterbach

This TRACE32 command shows the coverage tagging on address range level:

This TRACE32 command shows the coverage tagging at address level starting with the address of the
variable fstatic:

The data addresses are tagged as follow:

COVerage.List

Data.View %Var fstatic /COVerage

readwrite The data address was read at least once and written at least once.

read The data address has been read at least once.

write The data address has been written at least once.

never The data address was neither read nor written
Application Note for Trace-Based Code Coverage | 137©1989-2025 Lauterbach

This TRACE32 command displays the data coverage at variable level.

Each static variable occupies a fixed address range. This results in the following tagging for variables:

The tags rdwr ok, write ok, read ok and partial indicate that TRACE32 cannot clearly recognize whether
the address range contains program code or data. Please check your TRACE32 configuration or contact
your local technical support.

A complete list of all data coverage tags can be found in “Appendix H: Data Coverage in Detail”, page
149.

COVerage.ListVar

readwrite Read and write accesses were performed for all addresses within
the address range of the variable.

read Only read accesses were performed for all addresses within the
address range of the variable.

write Only write accesses were performed for all addresses within the
address range of the variable.

p-write Write accesses were performed only to a part of the address range
of the variable. No read accesses were performed.

p-read Read accesses were performed only to a part of the address range
of the variable. No write accesses were performed.

p-wr read Write accesses were performed only to a part of the address range
of the variable. Read accesses were performed for all addresses.

p-rd write Read accesses were performed only to a part of the address range
of the variable. Write accesses were performed for all addresses.

p-rd p-wr Both read and write accesses were performed only to a part of the
address range of the variable.

never Not a single address of the address range of the variable was read
or written.
Application Note for Trace-Based Code Coverage | 138©1989-2025 Lauterbach

Appendix E: Trace Decoding in Detail

Before the recorded trace data can be analyzed, it must be decoded first.

Trace Decoding for Static Applications

The object and source code is required to decode trace raw data recorded of static programs.

Decoding in Stopped State for Static Applications

This decoding is used for incremental code coverage and incremental code coverage in stream mode.

TRACE32 state: program execution stopped, no recording of trace data.

TRACE32 can read the object code from the target memory. Links to the source code files are part of the
debug symbol information maintained by TRACE32.

Decoding in Running State for Static Applications

This decoding is used in SPY mode code coverage.

TRACE32 state: program execution is running, trace data is recorded, but trace streaming is stalled while
trace decoding is performed.

TRACE32 can read the object code from the target memory, if the core allows the debugger to read memory
while the program execution is running (see also Run-time Memory Access).

Raw trace data

Decoded trace data
Application Note for Trace-Based Code Coverage | 139©1989-2025 Lauterbach

However, TRACE32 can decode the trace data much faster if it does not have to access the target memory.
That is why it is highly recommended to copy the object code into the TRACE32 Virtual Memory. This is
achieved by the /PlusVM option when the program is loaded. The PlusVM option directs TRACE32 to load
the object code into the target memory plus into the TRACE32 virtual memory.

The Data.COPY command is another possibility. It allows to copy the content of the target memory directly
to the TRACE32 Virtual Memory.

RTS Decoding for Static Applications

This decoding is used in RTS mode code coverage.

TRACE32 state: program execution is running, trace data is recorded and streamed to the host computer.

If trace data is decoded at program runtime and processed while streaming, decoding has to be as fast as
possible. An important prerequisite is that the object code is located in the TRACE32 Virtual Memory. This
is achieved by the /PlusVM option when the program is loaded. The PlusVM option directs TRACE32 to
load the object code into the target memory plus into the TRACE32 virtual memory.

The Data.COPY command is an another possibility. It allows to copy the content of the target memory
directly to the TRACE32 Virtual Memory.

Data.LOAD.Elf ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM

Data.Copy <address_range> VM:

NOTE: The object code required for trace decoding must be available in the TRACE32
Virtual Memory before the program execution and the trace recording is started.

Data.LOAD.Elf ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM

Data.Copy <address_range> VM:

NOTE: The object code required for trace decoding must be available in the TRACE32
Virtual Memory before the program execution and the trace recording is started.
Application Note for Trace-Based Code Coverage | 140©1989-2025 Lauterbach

Trace Decoding for Applications Using a Rich OS

Also in this case, the object code and source code are needed to decode the trace raw data. But paging
used by the operating system makes decoding more complex.

Since the onchip trace logic generates the program flow data based on virtual addresses, TRACE32 has to
know the valid memory space for each trace record in order to read the object code from the physical
memory for trace decoding. A task or context switch in the trace recording normally identifies the memory
space for the subsequent logical addresses.

Decoding in Stopped State (Rich OS)

This decoding is used for incremental code coverage and incremental code coverage in stream mode.

TRACE32 state: program execution stopped, no recording of trace data.

Trace decoding is performed in three steps:

1. TRACE32 reads the current task list and all task page tables with the help of the TRACE32 OS
Awareness from the target, when the program execution is stopped.

2. Task/context switches from the trace recording are decoded with the help of the task list.

3. The object code for each task is then read with the help of its page table. Links to the source
code files are part of the debug symbol information, which TRACE32 maintains for each memory
space.

Reading the object code fails, when a task/context switch from the trace recording can not be
decoded with the help of the current task list, e.g. because the task was terminated.

Decoding in Running State (Rich OS)

This decoding is used in Spy mode code coverage.

TRACE32 state: program execution is running, trace data is recorded, but trace streaming is stalled while
trace decoding is performed.

TRACE32 has no access to the current task list and the task page tables while the program execution is
running. The TRACE32 Virtual Memory must contain the task list, all task page tables and the object code
to enable TRACE32 to decode the raw trace data.

This requires a complex setup. Please contact the Lauterbach support in this case.

RTS Decoding (Rich OS)

This decoding is used in RTS mode code coverage.

TRACE32 state: program execution is running, trace data is recorded and streamed to the host computer.
Application Note for Trace-Based Code Coverage | 141©1989-2025 Lauterbach

TRACE32 has no access to the current task list and the task page tables while the program execution is
running. The TRACE32 Virtual Memory must contain the task list, all task page tables and the object code
to enable TRACE32 to decode the raw trace data.

This requires a complex setup. Please contact the Lauterbach support in this case.
Application Note for Trace-Based Code Coverage | 142©1989-2025 Lauterbach

Appendix F: Coding Guidelines

The following coding guidelines are recommended for full decision and condition coverage as well as for
MC/DC. If you follow these coding guidelines you avoid false negative results. False negative means that a
decision/conditions is tagged as incomplete although coverage has already been achieved.

Nevertheless, it is possible that the compiler itself generates such constructs at high optimization levels.

Avoid Simple Decisions in Assignment Context

It is likely that these conditions are not represented by a conditional branch/instruction at object code level.

In this example no conditional branch/instruction was generated for the condition a==b.

It is recommended to write the source code in a way that ensures that the conditional branches/instructions
required for the trace-based code coverage are generated.

A few examples:

; source code not suitable for
; trace-based code coverage

return a == b;

; source code suitable for
; trace-based code coverage

if (a == b) {
return TRUE;

}
return FALSE;
Application Note for Trace-Based Code Coverage | 143©1989-2025 Lauterbach

Avoid Nesting of Decisions

It is very likely that not all conditions are represented by a conditional branch/instruction at object code level.

This is illustrated by the following example:

; source code not suitable for
; trace-based code coverage

identity(a != b);

; source code suitable for
; trace-based code coverage

tmp = FALSE;
if (a != b) {

tmp = TRUE;
}
identity(tmp);

; source code not suitable for
; trace-based code coverage

return (a >= b) ? a : b;

; source code suitable for
; trace-based code coverage

if (a >= b) {
return a;

}
return b;

; source code not suitable for
; trace-based code coverage

return a > (b + (b && c));

; source code suitable for
; trace-based code coverage

if (b && c) {
tmp = 1;

}

if (a > (b + tmp)) {
return TRUE;

}
return FALSE;
Application Note for Trace-Based Code Coverage | 144©1989-2025 Lauterbach

In this example no conditional branches/instructions were generated for the conditions.

If the code is written in a way that suits for trace-based code coverage, all necessary conditional
branches/instructions were generated.
Application Note for Trace-Based Code Coverage | 145©1989-2025 Lauterbach

Appendix G: Object Code Coverage Tags in Detail

Standard Tags

Standard tagging applies to all core architectures and all trace protocols. The only exception are Arm/Cortex
cores that use the protocols Arm-ETMv1 or Arm-ETMv3, as well as Arm-ETMv4. However, for the Arm-
ETMv4 protocol, this only applies if no trace information about the execution of conditional non-branch
instructions is generated in order to save bandwidth (command ETM.COND OFF).

The following tags are used for object code coverage tagging:

Tag Tagging object Description

ok conditional branch The conditional branch has be at least once
taken and not taken.

conditional instruction The object code instruction has been executed
at least once with its condition code true and
once with its condition code false.

all other object code
instructions

The object code instruction has been executed
at least once.

taken conditional branch The conditional branch has be at least once
taken, but never not taken.

conditional instruction The object code instruction has been executed
at least once with its condition code true, but
never with its condition code false.

not taken conditional branch The conditional branch has be at least once not
taken, but never taken.

conditional instruction The object code instruction has been executed
at least once with its condition code false, but
never with its condition code true.

never all object code instructions The object code instruction has never been
executed.
Application Note for Trace-Based Code Coverage | 146©1989-2025 Lauterbach

The following tags apply for analysis at the source code, function or module level:

Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture

The following tags are used for object code coverage tagging:

Tag Tagging object Description

ok range of object code
instructions

All object code instructions within the range are
tagged with ok.

partial range of object code
instructions

Not all object code instructions within the range
are tagged with ok.

branches range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only taken and one that is only not taken.

taken range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only taken.

not taken range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only not taken.

never range of object code
instructions

Not a single object code instruction within the
range has been executed.

Tag Tagging object Description

ok conditional branch The conditional branch has be at least once
taken and not taken.

conditional instruction The object code instruction has been executed
at least once with its condition code true and
once with its condition code false.

all other object code
instructions

The object code instruction has been executed
at least once.
Application Note for Trace-Based Code Coverage | 147©1989-2025 Lauterbach

The following tags apply for analysis at the source code, function or module level:

only exec conditional branch The conditional branch has be at least once
taken, but never not taken.

conditional instruction The object code instruction has been executed
at least once with its condition code true, but
never with its condition code false.

not exec conditional branch The conditional branch has be at least once not
taken, but never taken.

conditional instruction The object code instruction has been executed
at least once with its condition code false, but
never with its condition code true.

never all object code instructions The object code instruction has never been
executed.

Tag Tagging object Description

ok range of object code
instructions

All object code instructions within the range are
tagged with ok.

partial range of object code
instructions

Not all object code instructions within the range
are tagged with ok.

cond exec range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only only exec and one that is only not exec.

only exec range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only only exec.

not exec range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only not exec.

never range of object code
instructions

Not a single object code instruction within the
range has been executed.

Tag Tagging object Description
Application Note for Trace-Based Code Coverage | 148©1989-2025 Lauterbach

Appendix H: Data Coverage in Detail

The data addresses are tagged as follow:

Each static variable occupies a fixed address range. This results in the following tagging for variables:

readwrite The data address was read at least once and written at least once.

read The data address has been read at least once.

write The data address has been written at least once.

never The data address was neither read nor written

readwrite Read and write accesses were performed for all addresses within
the address range of the variable.

read Only read accesses were performed for all addresses within the
address range of the variable.

write Only write accesses were performed for all addresses within the
address range of the variable.

p-write Write accesses were performed only to a part of the address range
of the variable. No read accesses were performed.

p-read Read accesses were performed only to a part of the address range
of the variable. No write accesses were performed.

p-wr read Write accesses were performed only to a part of the address range
of the variable. Read accesses were performed for all addresses.

p-rd write Read accesses were performed only to a part of the address range
of the variable. Write accesses were performed for all addresses.

p-rd p-wr Both read and write accesses were performed only to a part of the
address range of the variable.

never Not a single address of the address range of the variable was read
or written.

rdwr ok The address range achieved full object code coverage, and at least
one read and one write access occurred to address range.

write ok The address range achieved full object code coverage, and at least
one write access occurred to address range.
Application Note for Trace-Based Code Coverage | 149©1989-2025 Lauterbach

read ok The address range achieved full object code coverage, and at least
one read access occurred to address range.

partial The address range did not achieve full object code coverage. The
amount of read and write accesses that have taken place is not
further specified.
Application Note for Trace-Based Code Coverage | 150©1989-2025 Lauterbach

The coverage status of HLL source code statements that have associated data values is indicated by the
following tags if a data trace is available:

• rdwr ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one read and write access to the data values
has been recorded.

• write ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one write access to the data values has been
recorded.

• read ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one read access to the data values has been
recorded.

• partial: The HLL source code statement(s) have not been fully covered. At least one of the
associated assembly instructions has not been fully covered. The amount of read and write
accesses that have taken place is not further specified.

• readwrite: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been read and written
at least once.

• write: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been written at least
once and not read.

• read: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been read at least once
and not written.

• p-rd write: The HLL source code statement(s) have never been executed. None of the
associated assembly instructions has been executed and all of the data values have been written
at least once. In addition at least one data value has been read.

• p-wr read: The HLL source code statement(s) have never been executed. None of the
associated assembly instructions has been executed and all of the data values have been read at
least once. In addition at least one data value has been written.

• p-rd p-wr: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been read and
one written.

• p-write: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been written.

• p-read: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been read.

• never: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and neither read nor write accesses to the data values
have been recorded.
Application Note for Trace-Based Code Coverage | 151©1989-2025 Lauterbach

	Application Note for Trace-Based Code Coverage
	History
	Intended Audience
	Introduction
	Supported Code Coverage Metrics
	Code Coverage and Certification
	Trace-Based Code Coverage
	Introduction to the Approach
	Processors/Chips Suitable
	Code Coverage Measurement
	Evaluation of the Code Coverage Measurements
	Code Coverage for Multi-Core Systems
	Report Generation

	MC/DC, Condition and Decision Coverage
	Multiple Code Coverage Modes
	Preconditions for a Trace-Based Code Coverage
	The Individual Code Coverage Modes
	A Comparison of the Different Code Coverage Modes
	Causes for Observability Gaps: An Overview

	Evaluation of Switch Case Statements

	Code Coverage Workflows
	Workflows for Source Code Metrics
	General Procedure
	Statement Coverage Workflow
	Condition Coverage Workflow
	Decision Coverage Workflow
	MC/DC Workflow
	Function Coverage Workflow
	Call Coverage Workflow

	Workflows for Object Code Metrics
	General Procedure
	Object Code Coverage Workflow
	Object Code Based (ocb) Decision Coverage Workflow

	Build Process
	Introductory Notes
	General Recommendations for the Build Toolchain
	Build Process Requirements for All Code Coverage Metrics at a Glance
	Verification of Alignment with Production Code

	Build Process Call Coverage
	Build Process MC/DC, Condition and Decision Coverage
	Decide on the Appropriate Code Coverage Mode
	Build Process Code Coverage Mode — Targeted Instrumentation/No Instrumentation
	Build Process Code Coverage Mode — Breakpoint Assisted
	Build Process Code Coverage Mode — Full Instrumentation

	Selecting the Right Code Coverage Measurement Variant
	Overview Table
	TRACE32 Trace Tool Solutions for Code Coverage
	Solutions for Incremental Code Coverage in Leash Mode
	Solutions for Incremental Coverage in STREAM Mode and Continuous Code Coverage

	Best Practices for Trace Recording
	Reduce the Amount of Trace Data
	Ensure a Fault-Free Trace Recording
	Disable Timestamps for Trace Streaming

	Steps in Preparation for Code Coverage Measurement
	General Overview
	Maintaining Access to Measurement Setup for Later Evaluation
	Preparation for Statement, Function and Object Code Coverage
	Preparation for Call Coverage
	Preparation for MC/DC, Condition and Decision Coverage
	Preparation for Code Coverage with Targeted Instrumentation/No Instrumentation
	Preparation for Code Coverage with Breakpoints (Code in RAM)
	Preparation for Code Coverage with Breakpoints (Code in Flash)
	Preparation for Code Coverage with Full Instrumentation

	Code Coverage Measurement
	Incremental Code Coverage Measurement in Leash Mode
	Core Principles
	Measurement Steps
	Measurement Script
	Measurement Diagram

	Incremental Code Coverage Measurement in STREAM Mode
	Core Principles
	Measurement Steps
	Measurement Script
	Measurement Diagram

	Continuous Code Coverage Measurement in RTS Mode
	Core Principles
	Measurement Steps
	Measurement Script
	Measurement Diagram

	Continuous Code Coverage Measurement in SPY Mode
	Core Principles
	Measurement Steps
	Measurement Script
	Measurement Diagram

	Code Coverage with Virtual Targets
	ART Mode Code Coverage
	Data Collection
	Example Script

	Code Coverage Evaluation Outside TRACE32 - t32covtool
	Code Coverage Evaluation in TRACE32
	Object Code Coverage
	Evaluation
	Example Script

	Object Code Based (ocb) Decision Coverage
	Evaluation
	Example Script

	Evaluation of Intermediate Results

	Comment Your Results
	Appendix A: TRACE32 Coverage Report Utility
	Appendix B: Merge Multiple Object Code Based Measurements
	Save and Restore Code Coverage Measurement
	Save and Restore Trace Recording

	Appendix C: Assembler-Only Functions and Code Coverage
	Object Code Coverage
	Source Code Metrics

	Appendix D: Data Coverage
	Trace Data Collection
	Evaluation

	Appendix E: Trace Decoding in Detail
	Trace Decoding for Static Applications
	Decoding in Stopped State for Static Applications
	Decoding in Running State for Static Applications
	RTS Decoding for Static Applications

	Trace Decoding for Applications Using a Rich OS
	Decoding in Stopped State (Rich OS)
	Decoding in Running State (Rich OS)
	RTS Decoding (Rich OS)

	Appendix F: Coding Guidelines
	Appendix G: Object Code Coverage Tags in Detail
	Standard Tags
	Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture

	Appendix H: Data Coverage in Detail

