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Advanced Debug with PowerIntegrator 

Scenario 
In modern embedded applications, developers are facing a growing complexity with the problems they run 
into during the debug phase as they try to achieve a smooth running application combined with better and 
better performance. 
In most advanced designs the interaction between hardware and software is becoming more complex, and 
developers need specific tools to be able to analyze and correlate the hardware’s behaviour with the 
execution of certain blocks of code, something that is not usually seen when you are debugging “pure” 
software. 
A common example of this type of interaction is the need to monitor and record data controlled by software 
routines which is being sent between several devices on the board via the communication busses.  
For this type of monitoring in the hardware you need an instrument that can track and time the signals, a logic 
analyzer. If this instrument is then correlated with the software it provides information which is much easier for 
the developer to use. Even better if it can be integrated into the applications debug environment where full 
advantage can be taken of the links between the hardware and software operation 
A large and ever growing number of applications also use several communication protocols to allow exchange 
of data between either local devices (I2C, SPI, etc.) or remote equipment (serial lines, industrial bus, etc..), in 
this situation, an integrated logic analyzer can be very useful to perform protocol analysis. 
It is also becoming more common to find microprocessors which are able to handle the execution of a real-
time kernel even in applications which are low-end or of limited complexity. This is due to the huge base of 
solutions which are available for many applications (almost) off-the-shelf (think of Linux and connectivity as an 
example). This can add many layers of complexity to the debugging part of the project. 
This kind of design is often based upon CPUs that do not have an onchip trace port, or maybe there are 
physical design constraints have prevented the use of such technology even though a trace port is there. One 
of the debug options would be to use bus tracing or data logging which only needs a limited amount of chip 
resources and, again, we could use a logic analyzer for this purpose. 
The various ways you can utilize a logic analyzer integrated into the debug environment provide you with 
many advantages in terms of reduced effort and shorter debug time. 

Scope of this document 
The aim of this application note is to explain the usage, as an advanced debug tool, of PowerIntegrator, part 
of the range of TRACE32 PowerTools manufactured by Lauterbach, which is a powerful logic analyzer 
integrated in the TRACE32 PowerView debug development environment. 
The task is to show how to solve problems and issues of the type we discussed before by going through a 
series of examples that try to portray real-life situations, using the PowerIntegrator in various ways, along with 
snippets of code and PRACTICE scripts (Practice is the scripting language for Lauterbach tools). 
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Hardware employed 
Examples and solutions have been realized using two boards based on PowerPC architecture, both provided 
by Freescale Semiconductor 

MPC5554EVB  (http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC55xxEVB&fsrch=1),  
 This is a MPC5554 development board, to which we added two berg headers 10x2 pins, 0.254 mm 
spacing (100 mils), in order to connect PowerIntegrator probes. In this application example we used 
one standard digital probe and one analogue probe, for the measurement of both types of values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MPC8360E-MDS  (http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8360EMDS&fsrch=1),  
Modular Development System for the PowerQUICC II pro platform, based on an MPC8360, with three 
38 pin MICTOR™ connectors  for the monitoring of the local bus, to which 3 Mictor Probes have been 
connected in order to sample the local bus cycles. 
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Interaction between Hardware and Software 
Correlation between Hardware and Software execution 
The easiest and most immediate use of an integrated logic analyzer in TRACE32 is to obtain a correlation within 
a time diagram of hardware events and code execution. This task is not easily to achieve with a “lab” version of 
a logic analyzer, because the synchronization between the events and the code execution is only an 
approximation.  

With PowerIntegrator, this is an easy and quick task. You use the Trace32 built-in feature “Track”, which 
automatically synchronises all time-based diagrams on the host screen to the same time-base which we will 
see shown on an example implemented on the MPC5554EVB board. 
In this sample application, an onchip ADC on board of the MPC5554 is tied to a voltage defined by a variable 
resistor. The core then generates a PWM pulse train with a duty-cycle defined by the voltage from the 
variable resistor. 
The TRACE32 application is able to synchronize each and every time-based diagram because each device 
that is doing signal acquisition puts a special timestamp on each sampled record.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As the MPC5554 processor also includes a Nexus trace unit, we can record the real-time trace of the code. 
Through this mechanism it is easy to correlate events within the hardware to the specific software routines 
that generated them.  
For example, in the simple program that follows (Fig. 2.) a Fixed Interval Timer triggers an interrupt with a 
counter, each 100 repetitions a nibble runs a count from zero to sixteen, which is presented on four GPIO 
pins: the PowerIntegrator can monitor the status of the GPIO, and then analyze the trace to understand which 
routine caused the change.  

Figure 1
The figure shows how TRACE32 
synchronize the timing diagrams of the 
acquisitions in the logic analyzer; The 
value analog acquired (V0A) 
determines the duty-cycle of the PWM 
on board the MPC5554, visible in the 
diagrams of digital acquisition (i.PWM). 
The charts are aligned on the time axis 
thanks to the timestamps (with 
resolution 5ns) that PowerIntegrator 
attaches to each sample acquired. 
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In this case the TRACE32 environment must correlate information from two different modules, the real-time 
trace unit and the logic analyzer, and thanks to the timestamp mechanism we described above the timing 
diagrams for both signal traces can be precisely synchronized. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Of course in this simple case, there is only one the source of change and the code associated with the 
counting is unique, but it is easy to imagine a more complex scenario, and then it would be very useful to 
know "who" triggered the hardware event among all the possible candidates within the software, especially 
when what you are monitoring is an undesired event. 
 
 

Figure 2
The point of synchronization is the 
instruction that causes GPIO’s less 
significant bit to toggle: in this picture is 
easy to note that also the trace listing is a 
time diagram. 
These diagrams come from two different 
devices: the logic analyzer 
PowerIntegrator and PowerTrace, but 
they are synchronized thanks to the 
timestamps placed by both devices. 
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Hardware Trigger Events 
What we’ve seen in the previous example, introduces another interesting aspect of using a unit such as the 
PowerIntegrator. Because it’s fully integrated into TRACE32 it can track hardware events and eventually 
generate a trigger event usable by TRACE32 itself (for example to stop execution, or to stop the trace).  
PowerIntegrator has a programmable complex-trigger unit with several trigger levels and is able to combine 
the effects of signals, timers and counters in order to generate a trigger impulse.  
Let’s take as an example a trivial event such as pressing a push-button on the MPC5554EVB, the falling edge 
on signal i.SW1 will make the application break: the following pictures show the setup of PowerIntegrator and 
its programmable trigger system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The visible effect is that when pressing the SW1 button on the board, the falling edge generated on the 
channel being monitored (i.SW1) stops the execution of the program. 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3 
Powerintegrator is set to trigger on 
the falling edge of the signal button 
(i.SW1), which in turn will stop the 
execution of the program (Break). 

 Figure 4 
On the falling edge  of i.SW1, the 
Microprocessor is put in halt state, 
stopping the program execution and 
the acquisitions of the logic analyzer. 



 Hardware Triggers AN07101F – Advanced Debug with PowerIntegrator 
 

7 

 

Complex Trigger 
 
Based on the same concept, you can create more sophisticated trigger events by programming the complex 
trigger unit of the PowerIntegrator, for example by issuing the trigger only when the push-button has been 
pressed for a time of over 100ms.  This is possible by using the timers and the finite state-machine available 
in the trigger unit. 
This example reproduces a situation where you want to monitor the duration of an event and stop the 
execution of the program if it lasts over a specified time limit. 
To do this, the settings of the trigger system remain the same but you set the logic analyzer on program and 
compile the following program within the unit: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From this basis it is easy to understand how the PowerIntegrator can implement triggers controlled by very 
complex conditions. It can control the software execution based upon the behaviour of the hardware and the 
software. 
 
 

 
SELECTOR switch i.SW1.Low ; declaration section 
TIMECOUNTER delay 100.ms ; declare switch event and timer 
 
L00: 
counter.restart delay ;Level 0: monitor if switch is 
goto L01 if switch ;pressed and change level 
 
L01: 
goto L00 if !switch ;Level 1: go back if button 
trigger.PODBUS if delay ;is released before 100ms 
 ;otherwise issue trigger 

A
 Figure 5 
Powerintegrator is set to generate 
the trigger based on the program in 
the box above, point (A) is where 
the execution is stopped, caused by 
a 100 ms pressure on SW1. 
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Hardware Trace 
The most common application for a logic analyzer is the analysis of the logic status of signal groups. Applying 
this technique by sampling each system bus-cycle (address and data), allows reconstruction of the code 
executed by the CPU; in other words, you get a real-time trace of the program flow using a technique 
commonly  called Bus Trace. 
Similarly, one could sample only specific cycles on the system bus, or only a set of dedicated signals, in 
which case we usually call the method ’Data Logging’; usually you get less detailed information than in a 
"complete" trace  but the pay off is it normally needs far fewer resources. 
We put together some examples of how the PowerIntegrator would be used on an MPC8360EMDS board 
from Freescale, with a PowerQUICC II Pro CPU, a processor without a trace-port. 
This evaluation board is equipped with three MICTOR™ connectors for logic analyzers that allow observation 
of the local bus, an ideal example of an application for PowerIntegrator. 
 

Bus Trace 
By  sampling the bus cycles performed by the microprocessor you can reconstruct the program fetches and 
data read/write cycles. In this example we built a simple demo application into FLASH memory on the local 
bus of our MPC8360 board. We then connected PowerIntegrator probes to the mictor connectors for 
observation of the local bus, and we then configured it to recognize the read cycles sampling the bus on the 
rising edge of the FLASH chip-select. 
We then "programmed" the debugger to recognize the sampled cycles as instruction fetch using 

i.disconfig.cycle “fetch” fetch address w.ADDR0-31 data w.DATA0-31 

where words ADDR0-31 and DATA0-31 represent the local bus MPC8360 (see fig. 6) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 
The observation of the local bus (I), 
sampled at he physical level with 
PowerIntegrator allows the 
reconstruction of the flow through the 
disassembly of cycles (IIa) to obtain a 
complete Trace Listing (IIb), and a time 
diagram on high level (III ). 

I 

II 

III 

a

b
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The visibility of all of the execution cycles provides the user with information which can be analyzed within the 
TRACE32 standard debug environment; providing lists, charts and statistics (see picture 6 and 7), which 
enable the user to analyze the system performance in great detail. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 7 
Having full information about bus cycles 
performed by the system, the whole range 
of statistical functions of Trace32 is 
available. 
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Flow-Trace through Branch-Trace messages 
An alternative to Bus Trace is for the system to only sample information on execution of non-linear code, or 
in other words to sample and record only on the executed branch instructions, the code executed between 
these branches can then be reconstructed with an appropriate algorithm, assuming that the execution is 
always linear between branches. 
The trace thus reconstructed is complete and the trace record generally covers a longer period of time than in 
the “basic” bus trace (since fewer samples carry much more information) the drawback is the lower granularity 
of timing information as each single sampled record represents more bus cycles. 
As an example, we implemented this technique on the 
MPC8360E MDS board: The PowerPC core can issue an 
exception on every branch instruction hit, and with a 
dedicated Interrupt Routine, it is possible to transmit the 
destination of the branch to the PowerIntegrator, producing 
a trace file similar to the record 
from a Bus Trace. 
 
 

 
The routine writes the value of the program counter that caused the branch-trace exception (in a PowerPC 
this is stored in the state recovery register SRR0) to the area which is defined by the Flash chip-select. 
It is then necessary to tell the debugger to recognize the records as flow cycles, and we can get the 
complete trace listing of the program (see Figure 8): 

i.dc.cycle "flow" flow s i.nLWE0 low s i.nLWE1 low s i.LLA30 low a w.DATA0-31 d w.DATA0-31 

Note that in this case the address where the data is being written is irrelevant, providing it is defined, as all 
the information is contained in the written data (w.DATA0-31), which represents the value of the SRR0 when 
taking a branch-trace exception. 
Again as TRACE32  has a complete set of information about the executed code, all the functions for statistic 
and performance analysis are made available to the user. 
 
 
 
 
 

 Figure 8
Interpreting the acquired samples 
as flow trace packages you get 
complete information about the 
program code execution. 
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Data Logging 
As mentioned earlier, another technique often used is data logging, This is normally defined as capturing 
only specific information by writing some pre-defined data; usually in this type of application, one can use a 
memory buffer in which the application itself periodically saves the data of interest so it can then be analyzed 
offline at a later time when the CPU is stopped. With a logic analyzer, we could make the application store 
this data through PowerIntegrator, without "wasting" target resources, and usually with a less intrusive 
logging code as a bonus.  
An interesting situation is when the target is running an operating system and you need to carry out logging at 
both the kernel and application (user process) level. To provide an example, we again used the MPC8360 
MDS board, running a Linux Kernel and logging several data streams for different purposes: 

• With the help of the system tick will try to make a qualitative statistic the CPU load. 
• Track when Linux makes a Task Switch, and analyze it in a time diagram. 

In order to achieve this, we have to use specific code to instrument the Linux Kernel, represented by functions 
T32_KloggerAddr and T32_KloggerData, visible in Fig. 9.  
Their implementation is extremely simple, and the operating principle is already explained in the preceding 
paragraphs: both will ensure that the CPU makes a write data cycle to the area defined by the flash chip-
select, which is easily sampled with the PowerIntegrator, as done previously. 
 
 
 
 
 
 
 
 
 
 
 
T32_KLoggerAddr logs an address, in order to trace the transition to a specific point of the code, while 
T32_KLoggerData aims to log address and data of any write cycle executed by the microprocessor; 
being called in appropriate points of the code, these two functions can achieve the desired task. 
As is widely known, Linux is an operating system with process scheduling, in which the system tick timer 
(every 1ms in our example), implements a time sharing mechanism for the different tasks running; calling 
T32_KLoggerAddr in this very moment, we implement a time-based logging mechanism that allows us to 
have a qualitative view of the system performance along with a schematic trace, sampling every 1ms (see 
fig. 10) 
Using the same principle, we could instrument code so that the scheduler will log the change of the current 
running task both in the kernel control structures and in PowerIntegrator, calling T32_KLoggerData; in 
the scheduling function, immediately after the passage 

rp->curr = next 

passing as parameters the address of the task magic (pointer) and the current next value to be written. 

 Figure 9 
These are the Logging functions used 
in the Linux Kernel: both write the data 
to be stored in Powerintegrator on the 
Flash chip-select on local bus 



 Hardware Trace AN07101F – Advanced Debug with PowerIntegrator 

12 

With this information we can produce a schematic trace and a precise timing diagram of the task switching 
activity of our kernel (see fig. 10). 
We also have to determine to which area the logical addresses in the trace belong, so this means we have to 
ensure that as a new process is scheduled, the SpaceID of the new process is also forwarded to our logic-
analyzer, PowerIntegrator, again we use a call to T32_KloggerData. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Also we need to tell the debugger to disassemble so it is able to recognize PowerIntegrator records as system 
bus cycles. Here is an abstract of the configuration commands: 
 
 
 
 
 
 
 
 
The same results can be achieved in user-space, but in this case we need the application to be able to write 
on the local bus flash. To do this in Linux, the application must be able to write to physical addresses, 
something which is normally not allowed, but it is possible by using the device /dev/mem. 
It is not the purpose of this application note to show the methods used in detail, it is enough to know that the 
process can actually write to the same addresses of the two functions already described, and the 
PowerIntegrator can capture samples in the same way that we used in kernel-space. 
 
 
 
 
 
 
The result is that it is now possible to discriminate between operations made in kernel-space, user-space and 
related data, allowing us to utilize the analysis tools provided within TRACE32. (See fig. 11 and fig. 12) 
 
 

 
;#### Kernel fetch logged at FF000000 ##### 
i.disconfig.cycle "K-fetch" fetch &sWriteL0 &KfetchQual a w.DATA0-31 &SIDsample spaceID 
w.DATA0-31 
 
;#### SpaceIDs logged at FF000008 ##### 
i.disconfig.cycle "SpaceID" write &sWriteL0 &KSID_Qual spaceID w.DATA0-31 
 

;#### User fetch logged at FF000004 #####
i.disconfig.cycle "U-fetch" fetch &sWriteL0 &UfetchQual a w.DATA0-31 &SIDsample spaceID 
w.DATA0-31 

Figure 10
Thanks to the samples obtained by 
incorporating the Logger  functions 
in the Linux Kernel, we get the trace 
information, having a 1ms period for 
execution, and at each task switch. 
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Depending on the type of application, the methods described may be sufficient to extract all the information 
you need from within the code, using only the disassembly features provided within TRACE32 and with the 
PowerIntegrator implementing a Bus Trace. 
An alternative possibility is to rely on the Protocol Analysis technology, shown later in this document. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 11 
The samples obtained by logging on 
selected points in the code allows 
usage of Trace32 analysis tolls, 
distinguishing between kernel-space 
(K) and user-space (U). 

Figure 12 
The figure shows a realistic case of 
Data Logging in user-space. 
Specifically, the mechanism is applied 
to the TRACE32 method of malloc 
analysis, which allows automatic 
analysis of memory usage by a Linux 
process for debugging. 

K 

U 

U 
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Protocol Analysis 
When there is a need to monitor many signals, the most common reason is because they are part of a 
transmission bus, a data bus or even any proprietary protocol communication bus, as often happens in 
industrial applications. 
Within TRACE32, the protocol analyzer technology allows the interpretation of data acquired from 
PowerIntegrator through a dynamic library (DLL or shared object) and subsequent display formatting 
according to a specific protocol (i.e. the packets being transferred on an SPI bus). 
The system currently supports protocols such as JTAG, I2C, SPI and Asynchronous Serial, but this can be 
extended by the user to support any protocol by writing a specific library interpreter for the proprietary 
protocol and then use TRACE32 functions to display the transmitted data. The principle of the interpreter is to 
use a set of APIs as an interface to TRACE32, then to extract data from the PowerIntegrator trace storage, 
and finally processing and displaying them through TRACE32 environment windows. 

The library must be designed following few very 
specific rules: an initialization (PROTO_init) 
selects and prepares the channels that must 
then be read by the API function 
PROTO_readtrace and then passed through 
the processing functions (PROTO_Process), 
which can be deployed in up to 5 different levels 
Finally, the display functions (PROTO_display) 
take the data passed by the processing functions 
showing the data in TRACE32 as a listing. 
The user can also define several Export 
functions that allow the processed data to be 
saved in a file, with a customizable format. 
 

As an example of this capability, we used a program that sends commands through the SPI bus of the 
MPC5554EVB to a voltage regulator, which turns the reference voltage V1, on and off and then observing the 
voltage changes through the analogue probe. A nice feature to note is that in this case the synchronization 
function of TRACE32 aligns the view of the SPI data to the analogue trace from the logic analyzer. 
Again, this shows how the PowerIntegrator provides the essential correlation between hardware behaviour 
and the software implementation, Another essential element is the extreme flexibility of the protocol analysis 
technology, which is completely customizable by the user. 

 Figure 13 
In the digital acquisition we can see the 
raw SPI signals (I), aligned to the packet 
view (II), and the effects on hardware (III), 
where we see the voltage V02A 
waweform. 

I

II

III 
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Data Logger by Protocol Analysis 
We have seen how a typical method of using a logic analyzer like the PowerIntegrator is to track the 
performance of the software through the technique of Bus Trace.  Providing the data needed for the 
reconstruction of fetch and read/write cycles, through the direct monitoring of the system bus. Unfortunately 
this method is not always applicable and in modern targets it’s often impossible to get access to the bus 
signals. As many processors now provide a real-time trace from the silicon core this is not always the 
optimum solution, for example the ETM (embedded trace macro-cell) modules provided on ARM cores or the 
Nexus3 trace provided by Freescale on the MPC55xx family of processors. 
Another method in common use is to instrument the code, with careful implementation this can provide much 
useful information. A typical method would be to call an appropriate function which provides information on the 
last cycle executed by the CPU (within TRACE32 this functionality is known as “logger”). Reading out data like 
this from most cores is intrusive and interferes with the cores real time performance. Thus the frequency with 
which you call the logger must be set appropriately for the individual application, as we have already explained 
earlier in this application note (see Data Logging ).  
If this technique is implemented so that the information is made available via a hardware interface, it is 
possible to use a custom protocol to pass the data to the PowerIntegrator, and then to use the protocol 
analysis technology to display it in TRACE32, making use of the additional functions of trace storage analysis, 
compared to the information provided by the disassembler itself. 
This demo program will use an hardware resource, specifically the SPI bus, to pass information on code 
execution and read/write cycles on data ranges. 
In a similar way to what was done in the previous program, we will construct a protocol library whose second 
processing level will transform raw SPI packets contained in Logger Data, storing the result in the API 
structure of the Trace 32 programming environment. 

 
The protoDisCycle structure contains the information necessary 
to reconstruct a single system bus -cycle, if the Trace32 debugger 
finds valid information; the trace analysis functions such as listing, 
charts and structure are available as if it had actually come from a 
dedicated trace unit. 
 
 
 
 

In our sample program T32_SPI_Log, the 
routine example shown, can be called at 
each cycle as necessary. 
This will ensure that on the SPI bus selected 
by PCS0 on the MPC5554EVB information 
will be passed about the code execution. 
At display level ‘1’ of our library, we will have 
"raw " SPI packets, as in the previous 
example of protocol analysis. 
These packets are at a higher level of 
abstraction as shown by the routine code on 
the right. For each bus-cycle, on the SPI bus  
3 messages are sent: one descriptive 
synchronization packet, one containing the 
address, and one containing the data. 
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The second level of the protocol library puts the data inside the protoDiscycle structure, which allows 
display of the bus-cycles both in the protocol analyzer window and in the standard trace display windows such 
as listing and charts (figure 14 ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is worth comparing what has been done in this example of data logging using Protocol Analysis as 
compared to the previous data from the Bus trace: 

• It’s clear that this solution uses far less resources than the hardware bus trace, in fact only 3 
dedicated pins are utilized, compared to using the bus trace which needed the system bus 
to be totally available. 

• The intrusion level in the code is higher, because the write operation in the sampled area 
is no longer "atomic" (i.e. a single or a few bus-cycles), also it is using resources on the 
chip’s peripheral and heavier glue code ( the SPI interface driver in this example). 
There is always the possibility of optimizing this element possibly by reducing the load on 
the processor, perhaps using more pins might be a good trade off. 

• The trace depth is significantly lower, since using a software protocol involves an overhead 
depending upon the complexity of the protocol (more samples are needed for a single bus-
cycle). 

• Performances are comparable if, as in this example, you are able to use a fast enough 
protocol 

The two methods have similar fields of application, and the choice is usually defined by the physical 
limitations of the project hardware, such as reduced access that makes it impossible to sample the entire bus, 
the inability to use any spare pin(s) of the microprocessor, the need to retrieve the information with the least 
possible intrusion, etc… 

 

 

 Figure 14 
In addition to the raw SPI signals (I), 
aligned to the SPI packets view (II), we 
can see now the information as a 
standard Trace32 trace list (III) and 
symbolic chart (IV). 

I 

II

III

IV
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Conclusions 
In conclusion, the examples show how using PowerIntegrator can make a number of features available that 
are very useful for debugging all kind of applications. Potentially providing direct observation of phenomena 
related to either hardware or to code execution the PowerIntegrator can be programmed and adapted to work 
with a wide spectrum of events to be monitored, or used to analyze some specific protocol. 
All this is possible due to the concept of this logic analyzer and because it is integrated into the TRACE32 
debug environment, or in other words because it has been designed to add into and upgrade any existing 
Lauterbach setup, from the universal PowerDebug USB to the high performance PowerTrace II latest 
generation system. 
PowerIntegrator is an indispensable tool which can find many uses in any development lab. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PowerIntegrator – Technical Features 

• Complex Trigger System  
• Trigger I/O Synch with debugger 
• Protocol Analyser: 

CAN, USB, I2C, SPI, JTAG, Serial 
PCI, SDRAM + User Protocol Kit 

• Sampling Freq. fixed 250MHz, fixed 
500MHz, or by external clock 

• Trace Buffer from 512K x 204 Channels 
         or   1024K x 102 Channels 

• Disassembler for Bus trace 
• 3 Types of Digital Probes: Mictor, Samtec, 

Standard 
• Analogue Probe: 4 Voltage, 3 Current Input 
• Probe for SDRAM, PCI, DDR, ESICON 

 
 
 


