Introduction ANO7101F — Advanced Debug with PowerIntegrator

Advanced Debug with Powerlntegrator

Index
ADVANCED DEBUG WITH POWERINTEGRATOR. ...t e 2
SCENARIOD ..ttt ettt e oot e oot e oot e b oo oot e e e et e e e n e 2
SCOPE OF THIS DOCUMENT ... ttttttti e ettt testtt st e ettt e e e ettt et e e 4o ettt e e s e e e e e et e e e b e e e et et e e e b e e e e e et e e e b b e e e e e e eeas 2
Hardware @MPIOYEM ..o e oottt e e e e e et ettt e e e e e et e aa e e e e e e e etbr e aas 3
INTERACTION BETWEEN HARDWARE AND SOFTWARE .....cttttttttiiieeetttettits e e et e eesbb s e e e e et e s e e e e s e esabb s e e e e eeeenaees 4
Correlation between Hardware and Software @XECULION .............ovviiiiiiiiiiii e 4
Hardware TrHQQEI BEVENTS ...t e e e et e e et e e e e e e e eeetb e e e e e eeeestan e aaeaaaeee 6
(O7e] 1 0]0] 1= I o o = ST SPRRUOPPPPRN 7
HARDWARE TRACE ...ctttttiiit e ettt ettt ettt ettt e e oo ettt e e e e oo et e e e e e e e oottt eaa e e e e e et e s e b e e e e e e e eeneeenrraen s 8
BUS TTaCE. ...ttt e e ettt e et 8
Flow-Trace through BranCh-TraCe MESSATES. ... .. it i ettt ettt e e ettt a e e e ee et e e e e e eeeesnn e aaaaaees 10
(D= 1= W oo o |1 o S TTOPTTTR T 11
P ROTOCOL ANALYSIS ..ttt ettt ettt oo oottt e e e oo e ettt e et e e e e e e e e e e e e e e e e e e e s be e s 14
Data Logger DY ProtOCOI ANGIYSIS .......uuiiiiiiiiiitie ettt e ettt e e e e e ee ettt e e e e e eeeeaanaaaeaaaeees 15
CONCLUSIONS ..ttt ettt e e oo ettt e oo e oo ettt e e b oo e oo et e e e a e e e e et e e e bbb e e e et e e e e e e e e bbb e e e 17

www.lauterbach.com LAUTERBACH‘/.“'\‘




Introduction ANO7101F — Advanced Debug with PowerIntegrator

Advanced Debug with Powerlntegrator

Scenario

In modern embedded applications, developers are facing a growing complexity with the problems they run
into during the debug phase as they try to achieve a smooth running application combined with better and
better performance.

In most advanced designs the interaction between hardware and software is becoming more complex, and
developers need specific tools to be able to analyze and correlate the hardware’s behaviour with the
execution of certain blocks of code, something that is not usually seen when you are debugging “pure”
software.

A common example of this type of interaction is the need to monitor and record data controlled by software
routines which is being sent between several devices on the board via the communication busses.

For this type of monitoring in the hardware you need an instrument that can track and time the signals, a logic
analyzer. If this instrument is then correlated with the software it provides information which is much easier for
the developer to use. Even better if it can be integrated into the applications debug environment where full
advantage can be taken of the links between the hardware and software operation

A large and ever growing number of applications also use several communication protocols to allow exchange
of data between either local devices (12C, SPI, etc.) or remote equipment (serial lines, industrial bus, etc..), in
this situation, an integrated logic analyzer can be very useful to perform protocol analysis.

It is also becoming more common to find microprocessors which are able to handle the execution of a real-
time kernel even in applications which are low-end or of limited complexity. This is due to the huge base of
solutions which are available for many applications (almost) off-the-shelf (think of Linux and connectivity as an
example). This can add many layers of complexity to the debugging part of the project.

This kind of design is often based upon CPUs that do not have an onchip trace port, or maybe there are
physical design constraints have prevented the use of such technology even though a trace port is there. One
of the debug options would be to use bus tracing or data logging which only needs a limited amount of chip
resources and, again, we could use a logic analyzer for this purpose.

The various ways you can utilize a logic analyzer integrated into the debug environment provide you with
many advantages in terms of reduced effort and shorter debug time.

Scope of this document

The aim of this application note is to explain the usage, as an advanced debug tool, of PowerIntegrator, part
of the range of TRACE32 PowerTools manufactured by Lauterbach, which is a powerful logic analyzer
integrated in the TRACE32 PowerView debug development environment.

The task is to show how to solve problems and issues of the type we discussed before by going through a
series of examples that try to portray real-life situations, using the Powerlntegrator in various ways, along with
snippets of code and PRACTICE scripts (Practice is the scripting language for Lauterbach tools).
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Hardware employed

Examples and solutions have been realized using two boards based on PowerPC architecture, both provided
by Freescale Semiconductor

MPC5554EVB  (http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC55xxEVB&fsrch=1),

This is a MPC5554 development board, to which we added two berg headers 10x2 pins, 0.254 mm
spacing (100 mils), in order to connect Powerlntegrator probes. In this application example we used
one standard digital probe and one analogue probe, for the measurement of both types of values.

LA-T949
Pl-ANALOG
PROBE
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MPCB8360E-MDS (http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8360EMDS&fsrch=1),
Modular Development System for the PowerQUICC Il pro platform, based on an MPC8360, with three
38 pin MICTOR™ connectors for the monitoring of the local bus, to which 3 Mictor Probes have been
connected in order to sample the local bus cycles.
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Interaction between Hardware and Software

Correlation between Hardware and Software execution

The easiest and most immediate use of an integrated logic analyzer in TRACE32 is to obtain a correlation within
a time diagram of hardware events and code execution. This task is not easily to achieve with a “lab” version of
a logic analyzer, because the synchronization between the events and the code execution is only an
approximation.

With Powerlntegrator, this is an easy and quick task. You use the Trace32 built-in feature “Track”, which
automatically synchronises all time-based diagrams on the host screen to the same time-base which we will
see shown on an example implemented on the MPC5554EVB board.

In this sample application, an onchip ADC on board of the MPC5554 is tied to a voltage defined by a variable
resistor. The core then generates a PWM pulse train with a duty-cycle defined by the voltage from the
variable resistor.

The TRACES32 application is able to synchronize each and every time-based diagram because each device
that is doing signal acquisition puts a special timestamp on each sampled record.
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Figure 1
The figure shows how TRACE32
3.0 synchronize the timing diagrams of the
acquisitions in the logic analyzer; The
value analog acquired (VOA)
2.a determines the duty-cycle of the PWM
on board the MPC5554, visible in the
diagrams of digital acquisition (i.PWM).
1.8 C : The charts are aligned on the time axis
thanks to the timestamps (with
f || | resolution 5ns) that Powerlntegrator
Be|_Jj >l | attaches to each sample acquired.
<

As the MPC5554 processor also includes a Nexus trace unit, we can record the real-time trace of the code.
Through this mechanism it is easy to correlate events within the hardware to the specific software routines
that generated them.

For example, in the simple program that follows (Fig. 2.) a Fixed Interval Timer triggers an interrupt with a
counter, each 100 repetitions a nibble runs a count from zero to sixteen, which is presented on four GPIO
pins: the Powerlntegrator can monitor the status of the GPIO, and then analyze the trace to understand which
routine caused the change.
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In this case the TRACE32 environment must correlate information from two different modules, the real-time
trace unit and the logic analyzer, and thanks to the timestamp mechanism we described above the timing
diagrams for both signal traces can be precisely synchronized.

L [B::A.List /T] I =Jo/Ed
[ﬁ Setup...][n, Goto...][_j‘j Find... ] gChart & biore X Less ] -
record run address cycle data symbol ti.back ]
=B 1.T1.5W1 1.PVM 1.GPI0203 1.GPI0204 ... = [/Eg (t-coont > O 0.610us sl
& Setup.. (24 Name... [ (3 Gato... ][ #1Find.. | 4p In][p4 Oup[unt FITctr nibble to GPIO 203—206 */ v
—6AA . ARANS —CGCA . ARfNS TCtI‘(flag_fit_COUl‘lt) 0.813us A,
o line l I — /% only 1st flag_fit_count nmmmber */
PSHLef ¥203 = FITetr §& 0x01; 1.220us
i . PVM s I A LAV ULAT LAY %204 = (FITctr & 0x02) >> 1; 0.813us
GPIOZA3 e | = *205 = (FITctr & 0x04) >> 2; 1.017us
B B ol L T I A I I N x206 = (FITctr & 0x08) >> 3; 1.017us
.GP 10285 » L SI0.GPDO[203] .R = x203; 1.01%7us
GPIOZAG S JuUuUvuUuUuwuUyw SIU.GPDO[204] .R = x204; 0.610us
- = = — ST0.GPDO[206] .R = %206; 0.610us
£ B::Analyzer.Chart.F /T [;]@
(& Setup... (i Groues..| (28 Config..J( (3 Goto...][ 3 Find... |[ 4» In ][4 Out [ Ful] /% Clear FIT’s flag  0.815us
Bns  -549.450ns  -549.448ns  -549.430 - 1
bont) l——————————F———————————— |1 The point of synchronization is the 8
"EEII]E" ::_ —— [ M | | \struction that causes GPIO’s less
waelel significant bit to toggle: in this picture is
initFITdsl easy to note that also the trace listing is a
initlrgqvectorsf | . [|timediagram.
Ll "
Fi%?éR :: e These diagrams come from two different
CirFitFlagl®| | m=m devices: the logic analyzer
o PowerIntegrator and PowerTrace, but
they are synchronized thanks to the
Bm e (2] timestamps placed by both devices.

Of course in this simple case, there is only one the source of change and the code associated with the
counting is unique, but it is easy to imagine a more complex scenario, and then it would be very useful to
know "who" triggered the hardware event among all the possible candidates within the software, especially
when what you are monitoring is an undesired event.
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Hardware Trigger Events

What we've seen in the previous example, introduces another interesting aspect of using a unit such as the
Powerlintegrator. Because it’s fully integrated into TRACE32 it can track hardware events and eventually
generate a trigger event usable by TRACES32 itself (for example to stop execution, or to stop the trace).
PowerlIntegrator has a programmable complex-trigger unit with several trigger levels and is able to combine
the effects of signals, timers and counters in order to generate a trigger impulse.

Let’s take as an example a trivial event such as pressing a push-button on the MPC5554EVB, the falling edge
on signal i.SW1 will make the application break: the following pictures show the setup of Powerintegrator and
its programmable trigger system.
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-F x | [ ABCDEF | JELMND , — CSELect , — available TSYNC — selected .
o | @&z ) 250MHZ ; [w] | | [i5wn Tel :
contral Connect Set [from BUS) ) 500MHZ — | :.g&?zﬂs |
O OFF O Out Break MG e ot ]| | |iGRIO0E :
(%) A ® In ok O State FGPI020)
) O StatePLL e iSCK
lewel Mods [ ATringer ) StmsPLLBcth e
high @ 1 Loy I 1 | mShuwFacus :..'J:'ICDSS
maritor O T High Dut to BUS] ; |
KB I A advanced i12
) X Faling [ Break _ || _ :j}g
Trigger O i Rising [ ABreak X Faling "X Faling :JE‘IL?(A [
[ ATrigger ol WS g I Rising [LELK) =
| A OOR -
Figure 3 - SAMPLE |- SAMPLE | r DTﬂP;:Delay 1T DTEount T 1T;J:iay
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the falling edge of the signal button TSele o - .
(i.SW1), which in turn will stop the Mswe [ - Twidth ~Tout-
execution of the program (Break). o | @lFeren [ Progam | 0.000
program (Break) « Db [~

The visible effect is that when pressing the SW1 button on the board, the falling edge generated on the
channel being monitored (i.SW1) stops the execution of the program.
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stopping the program execution and Var J[ PERF J[ SvStem J[ Step N{ Go J[ Bresk |[ Register | [ other ][ povions
the acquisitions of the logic analyzer. stopped M UP
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Complex Trigger

Based on the same concept, you can create more sophisticated trigger events by programming the complex
trigger unit of the Powerlntegrator, for example by issuing the trigger only when the push-button has been
pressed for a time of over 100ms. This is possible by using the timers and the finite state-machine available
in the trigger unit.

This example reproduces a situation where you want to monitor the duration of an event and stop the
execution of the program if it lasts over a specified time limit.

To do this, the settings of the trigger system remain the same but you set the logic analyzer on program and
compile the following program within the unit:

SELECTOR switch i.SW1.Low ; declaration section

TIMECOUNTER delay 100.ms ; declare switch event and timer

LOO:

counter.restart delay ;Level 0: monitor if switch is

goto LO1 if switch ;pressed and change level

LO1:

goto LOO if !switch ;Level 1: go back if button

trigger.PODBUS if delay ;is released before 100ms
;otherwise issue trigger

IR =1 %
24 B::1.T1.5W1 i.PVM i.GPI0203 i.GPI0204 i.GPI020... [ |[OJE3 [ JKLMND | - CSELect ot et .
sLTh 1 1 1. 1. G | = Iﬂm
(& Setup. (24 Name...|[ (3 Gote. [ #3 Find... |[ 4p In |(p-4 Out @ Ful] [ O — |
—158 . 08Pns —188 . 8ABns -G 088 HZ symbol value lewel
line | | II = O State DEL&Y 0.000 Loo

O -

i .PYM I e TDeley
i.GPI02A3 4L il ShowFocus 1.044ms
i.GPI0Z0B4 < | [DEFALLT v
1.GP 10285 < - D e b __\\ advanced - =
i.GPI0Z@6 Iy~ = [ | . o

X_ Falling [ Busa
. — . b % Rising
o e o
ToARE iR
Powerintegrator is set to generate
the trigger based on the program in
the box above, point (A) is where Tostect
the execution is stopped, caused by s ALPLE
! or  [¥] Program l—. Program >
a 100 ms pressure on SW1. R ] —

From this basis it is easy to understand how the Powerlntegrator can implement triggers controlled by very
complex conditions. It can control the software execution based upon the behaviour of the hardware and the
software.
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Hardware Trace

The most common application for a logic analyzer is the analysis of the logic status of signal groups. Applying
this technique by sampling each system bus-cycle (address and data), allows reconstruction of the code
executed by the CPU; in other words, you get a real-time trace of the program flow using a technique
commonly called Bus Trace.

Similarly, one could sample only specific cycles on the system bus, or only a set of dedicated signals, in
which case we usually call the method 'Data Logging’; usually you get less detailed information than in a
"complete” trace but the pay off is it normally needs far fewer resources.

We put together some examples of how the Powerintegrator would be used on an MPC8360EMDS board
from Freescale, with a PowerQUICC Il Pro CPU, a processor without a trace-port.

This evaluation board is equipped with three MICTOR™ connectors for logic analyzers that allow observation
of the local bus, an ideal example of an application for PowerIntegrator.

Bus Trace

By sampling the bus cycles performed by the microprocessor you can reconstruct the program fetches and
data read/write cycles. In this example we built a simple demo application into FLASH memory on the local
bus of our MPC8360 board. We then connected Powerlntegrator probes to the mictor connectors for
observation of the local bus, and we then configured it to recognize the read cycles sampling the bus on the
rising edge of the FLASH chip-select.

We then "programmed" the debugger to recognize the sampled cycles as instruction fetch using

i.disconfig.cycle “fetch” fetch address w.ADDRO-31 data w.DATAO-31

where words ADDRO-31 and DATAO-31 represent the local bus MPC8360 (see fig. 6)

‘trace. list g@
elup. olg... ind... ! & More & Less
(& Setup|[ @ Goto.. || $3Find. ][ 25 Char |[_$ More [ T L :
record run address cycle data symbol ti.hack |
= B::trace.chart.func frack . - ()
unsigned char Sinewave[630]; =
(& Setup. (i Groves. |2 Config. (3 Goto...|[_§]Find... ][ 4p In |(»« Cut]4p Ful I I el
—24.508ns -24.868ns void funcS0(void) Al
r‘anqe | | 600 { | i
(root) ©| | stuu ri,-@xz2A{rl)
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Funcd n t : etch ~ievedeno\sievedeno\ funcs@ +ax . 756us
func3 1 —-@828815 P:FEF8158A fetch  @ARA ..ievedeno\sievedeno\ func5@+8xBE B.712us
Fﬂ:gﬁ:: 4 n 1 wnsigned char x,y,1i,upper,down;
func8 < r £ @
funca 4. i ‘- 603 f(n;fx [IH x(ZISSJExaﬂ Sinewave[x] 0;
funclf < 828814 P:FEF8150C fetch 981F .ievedeno\sievedeno\FuncS@+@x18  B.712us
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ekl ' 1 disassembly of cycles (lla) to obtain a

complete Trace Listing (IIb), and a time
diagram on high level (IIl').
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The visibility of all of the execution cycles provides the user with information which can be analyzed within the
TRACES32 standard debug environment; providing lists, charts and statistics (see picture 6 and 7), which
enable the user to analyze the system performance in great detail.

Z|B: :trace.stat.func total avr i ibar
HW Setup...] i Groups...]@ Config...][ (pe Goto...] = | List all || &3 gFunc Cha* © Int |
funcs: 29. total: 27.818ms

range total avr internal 14 24 G4 184 284 LAY 188 |
{(root) 27.818ns | 27.018ms | 174.452us |+ |
nonfuncS@ | 22.774ms | 11.38Vms | 22.774ns
“funcl@ 2.897ns 2 .897ms Z2.897ns
lenomain 1.376ns 1.376ms | 183.176us |«
nohfuncid | 288.876us | 172.453us | 288.876us
nosfuncg | 249.348us | 249.348us | 197.804us |+

<1 £B:: TRACE STAT. TREE tree min max total M=)}
: (& Setup...|(id Groups. | (28 Config.)[ A Gote... [ =] List ol |[E3] Mesting#2] Fune chaf| @ Init_|
funcs: 13, total:  27.018ms -
Having full information about bus cycles (r‘aﬂftl? 't_r";;‘e - min mag? - 'tﬂglmg =
root) [= (roo B .@18ms .A18ms ||A
performed by the system, the whole range i | “ain [F-= nain 1.37%6ms |  1.376ms | 1.376ms | |
of statistical functions of Trace32 is enofunc2 || = func2 249.348us | 249.348us | 249.348us
available. lenofuncl . funci 17.164us | 17.212us | 51.544us
func2a — = funcZa 156.332us | 156.332us | 156.332us
funczh — = funczh 144 .728us | 144.728us | 144.728us
func2d — = func2d 156.208us | 156.208us | 156.208us
func4 —= funcd 31.696us | 31.696us | 31.696us
func3 —= func3 11.440us | 11.440us | 11.440us
funch — = funch 24.26Bus | 24.26Bus | 24.26Bus
funcd — = funcB 288 .632us | 288.632us | 288.632us
func9 —= func9 210.300us | 218.38Aus | 218.30Aus
F_ur_lt_:lJ - funcl 17.168us | 17.212us | 68.884us ||v|
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Flow-Trace through Branch-Trace messages

An alternative to Bus Trace is for the system to only sample information on execution of non-linear code, or
in other words to sample and record only on the executed branch instructions, the code executed between
these branches can then be reconstructed with an appropriate algorithm, assuming that the execution is
always linear between branches.

The trace thus reconstructed is complete and the trace record generally covers a longer period of time than in
the “basic” bus trace (since fewer samples carry much more information) the drawback is the lower granularity
of timing information as each single sampled record represents more bus cycles.

As an example, we implemented this technique on the
MPC8360E MDS board: The PowerPC core can issue an 18 In i

. . . . . Setup... Goko... Find... g[ﬁhar & More || X Less
exception on every branch instruction hit, and with a [ERR(;RDS ][tri"_ha::k][ S ;]addr-esst cucle data

dedicated Interrupt Routine, it is possible to transmit the Lss  oHiaidies) 2

. . . 348 tol = statl;
destination of the branch to the PowerIntegrator, producing T oe,ma I
. . cnpui r23d,8x1 i
a trace fle similar to the record T
0.136us _AP:10ROABIC flou  19000KIC

from a Bus Trace. Interpreting the acquired samples
as flow trace packages you get
complete information about the
program code execution.

for { regl = 0 ; regl < 2 ; regl++ )
i

static stat2 = 0;
register regZ;
avto autoZ;

Flis r9,Ax10A1
E|B:: TRACE.STAT.TREE tree min max total =] B::trace.chart.func ftrack E]@
& Setup... (1 Grovps. | (28 Config. (A Goto. ][ =] List al #={FuneChan| €Y Int /[ Setup. (151 Grows.) (28 Config. | (Y Gato. . |[ 3 Find... { 4p In |(»4 Cut M Fuil ) )
funcs: 33. total:  27.818ns 5 -24.508ns -24 . B8NS ~23.508ns
range |tree min max |total ¥ range | | 1
{root} (= {(root) = 27.018ns | 27.818ns || (root) & | }
L main [—=mnain 1.376ns 1.376ms 1.376ms |||l main<{| [l - } I T T—
funcz = funcZ 249.348us | 249.348us | 249.348us func2<| | -
func1 —. funcl 17.164us | 17.212us | 51.544us funct ¢ [T T o0 B | B
funcza - funcZa 156.332us | 156.332us | 156.332us funcza < | ]
funczh = funczh 144 .728us | 144.728us | 144 .728us func?h ) ) I = ) [ )
funczd = funcZd 156.2088us | 156.2088us | 156.208us funczd | ]
func4 - func 31.696us = 31.6%6us | 31.696us funcd & S . n
func3 - func3 11.440us | 11.448us | 11.448us func3 < 1
funcs - funcs 24.26Bus  24.260us | 24.260us funch ¢ S N |
funcg « func8 208 .632us | 208 .632us | 2@B.632us funcg & L |
func9 = funcd 210.300us | 21@.380us | 210.300us funca & o S . EElm
funcl — - funcl 17.168Bus | 17.212us | 68.884us |||, punc1d < I
funcii 4y [
I AmE ) E3

The routine writes the value of the program counter that caused the branch-trace exception (in a PowerPC
this is stored in the state recovery register SRRO) to the area which is defined by the Flash chip-select.

It is then necessary to tell the debugger to recognize the records as flow cycles, and we can get the
complete trace listing of the program (see Figure 8):

i.dc.cycle "flow" flow s i.nLWEO low s §i.-nLWE1l low s i.LLA30 low a w.DATAO-31 d w.DATAO-31

Note that in this case the address where the data is being written is irrelevant, providing it is defined, as all
the information is contained in the written data (w.DATAO-31), which represents the value of the SRRO when
taking a branch-trace exception.

Again as TRACE32 has a complete set of information about the executed code, all the functions for statistic
and performance analysis are made available to the user.
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Data Logging

As mentioned earlier, another technique often used is data logging, This is normally defined as capturing
only specific information by writing some pre-defined data; usually in this type of application, one can use a
memory buffer in which the application itself periodically saves the data of interest so it can then be analyzed
offline at a later time when the CPU is stopped. With a logic analyzer, we could make the application store
this data through Powerlntegrator, without "wasting" target resources, and usually with a less intrusive
logging code as a bonus.

An interesting situation is when the target is running an operating system and you need to carry out logging at
both the kernel and application (user process) level. To provide an example, we again used the MPC8360
MDS board, running a Linux Kernel and logging several data streams for different purposes:

o With the help of the system tick will try to make a qualitative statistic the CPU load.
e Track when Linux makes a Task Switch, and analyze it in a time diagram.

In order to achieve this, we have to use specific code to instrument the Linux Kernel, represented by functions
T32_KloggerAddr and T32_KloggerData, visible in Fig. 9.

Their implementation is extremely simple, and the operating principle is already explained in the preceding
paragraphs: both will ensure that the CPU makes a write data cycle to the area defined by the flash chip-
select, which is easily sampled with the Powerlntegrator, as done previously.

E[B::d.1 T32_KLoggerAddr] g@
[ M Step ][ [ ][ + Nest ][qu!etum][ ¢ Up ][ » Go ] Il Break "E;. Maode | Find: schedc

‘source = |

// Log by a write to T32_TraceaddrP .

// Log an address, PI recontruct it as a program fet{ =|[B::d.1T32 KLoggerAddr] E]@
2700 EOId 132_KLoggeraddr (void * addr) [ Bl Step ][ W Over ][ 4 Mext ][4" Helurn][ ¢ Up ][ P Go ] 11 Break NE:; Mode | Find: schedc
2701 |if (T32_TraceaddrP) SOUrce = ]

= i - // Log by a write to T32_TraceaddrP+offset an |l
g;gg I S aireceaton Nerenged Tonglotts // address (32 hit) and the written data (32 hit). b |
3| - // PI reconstruct it as a 32 hit data write cyecle.
- - void T32_KLoggerData(unsigned long addr, unsigned long data}
3 686 |{
Flgure 9 . n 687 |if {T32_TraceaddrP)
These are the Logging functions used { 2 ;
f f . . unsigned long a = (unsigned long)addr;
n the Linux Kernel' bOth write the data unsigned long t = (unsigned long)T3Z2_TraceaddrP;
to be stored in Powerintegrator on the 91 e
5 = a;
Flash chip-select on local bus 593 *(unsigned long *)t = data;
}
e

T32_KLoggerAddr logs an address, in order to trace the transition to a specific point of the code, while
T32_KLoggerData aims to log address and data of any write cycle executed by the microprocessor;
being called in appropriate points of the code, these two functions can achieve the desired task.

As is widely known, Linux is an operating system with process scheduling, in which the system tick timer
(every 1ms in our example), implements a time sharing mechanism for the different tasks running; calling
T32_KLoggerAddr in this very moment, we implement a time-based logging mechanism that allows us to
have a qualitative view of the system performance along with a schematic trace, sampling every 1ms (see
fig. 10)

Using the same principle, we could instrument code so that the scheduler will log the change of the current
running task both in the kernel control structures and in Powerlntegrator, calling T32_KLoggerData; in
the scheduling function, immediately after the passage

rp->curr = next

passing as parameters the address of the task magic (pointer) and the current next value to be written.
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With this information we can produce a schematic trace and a precise timing diagram of the task switching
activity of our kernel (see fig. 10).

We also have to determine to which area the logical addresses in the trace belong, so this means we have to
ensure that as a new process is scheduled, the SpacelD of the new process is also forwarded to our logic-
analyzer, PowerIntegrator, again we use a call to T32_KloggerData.

=] [B::Trace.List list.task def /track ] [ Q@
[ﬂ Setup. ][n Goto...][ F3Find ] #=] Chant [ & Moe ][ X Less
record [run address cycle data symbo1 ti.back 1
—AR5739 P :@00A :COAA3BAC K-fetch Lh\ppchx_idle+@xE4  1.800ns |~
-@a5738 P:@@@0:CARAIBAC K- fetch .d\ppchxx_idle+dxE4  1.8@@ns = |
—AAS737 P:@@AA :CARA3BAC K-fetch .d\ppcBxx_idle+dxE4  1.8@8ns |
-BA5736 P:@@80 :CARAIBAC K- fetch Wvppeoxx_idle+@xE4  1.880ns [ Figure 10
-B@5735 P:0000:CARAIBAC K-fetch .d\ppchxx_idle+dxE4  1.880ns
-AA5734 P:@000 :CARA3BAC K-fetch Lh\ppohxs_idle+@xE4  1.888ns i
-@a5733 P:@@@0:CARAIBAC K- fetch .h\ppchxx_idle+@xE4  1.@@@ns Thanks to.the samples obtalneq by
-BB5732 P:0B80:CARB3BAC K-fetch .d\ppeexx_idle+xE4  1.080ns incorporating the Logger functions
-AR5731 P:@000 :CAAA3BAC K-fetch .hppohxe_idle+@xE4  1.808ns i i

|l s S AT !nmeLmuxKemeLwegatthmm
-AAS 738 AD:CAZ21EWA KWritel CFFAC3IEA .pu__rungueues+ix2d  5.948us information, having a 1ms period for
R i - R fiious execution, and at each task switch.
-Ap5728 AD:CB2Z21EMA KWritel CA1EDABA pu__rungueues+dx20  53.696us
-Bas727 SpacelD ARAARARA 8.136us
—AAS 726 P:@@AA:CARA3BAC K-fetch .d\ppcBxx_idle+lxE4 948 .@92us
-BA5725 P:@@80 :CARAIBAC K- fetch O\ppehxx_idletBxE4 g ,
-Ba5 724 P:0000:CARAIBAC K-fetch .d\ppchx_idle+axEq
—-ae5 723 P:8800:COPP3BAC K-fetch J\ppcBxx_idle+@xE4 (&S (58 Covio [ R Goto . [ FFind.. |[ ZChat [ 4p In](4 0uiinFuil
-Ba5722 P:@@@0:CARAIBAC K- fetch .d\ppchxx_idle+axE4 -35.0085 -30.000s
-AAS 721 P:@A@AA:CARA3BAC K-fetch .d\ppcBxx_idle+AxEq range \ ! i
-pAs 720 P:@000 :CAAA3BAC K-fetch \ppchxx_idle+AxE4 (root)Btroot) o —
-AB5719 P:@PA0:CAAA3BAC K-fetch tppc6sx_idle+BxE4 (root)@pdflushié| =—
-AA5718 P :@@@A :CARA3BAC K-fetch d\ppchxx_idle+AxEd (root) Rsuapper | NI 1]

(root)Bevents/B - —_ - e e
(root) @sh . ; : : m—
(root)@sieve s ) S i N —————7 i 2 R
(root)@pingl ) —_—

Also we need to tell the debugger to disassemble so it is able to recognize Powerlntegrator records as system
bus cycles. Here is an abstract of the configuration commands:

;#### Kernel fetch logged at FFOO0000 ###H#H
i .disconfig.cycle "K-fetch"™ fetch &sWriteLO &KfetchQual a w.DATA0-31 &SlIDsample spacelD
w.DATAO-31

;#### SpacelDs logged at FFOO0008 ####H#
i .disconfig.cycle "SpacelD" write &sWriteLO &KSID_Qual spacelD w.DATAO-31

The same results can be achieved in user-space, but in this case we need the application to be able to write
on the local bus flash. To do this in Linux, the application must be able to write to physical addresses,
something which is normally not allowed, but it is possible by using the device /dev/mem.

It is not the purpose of this application note to show the methods used in detail, it is enough to know that the
process can actually write to the same addresses of the two functions already described, and the
Powerlntegrator can capture samples in the same way that we used in kernel-space.

;###H# User fetch logged at FFO00004 #H#HHH
i .disconfig.cycle "U-fetch" fetch &sWriteLO &UfFetchQual a w.DATA0-31 &SlIDsample spacelD
w.DATAO-31

The result is that it is now possible to discriminate between operations made in kernel-space, user-space and
related data, allowing us to utilize the analysis tools provided within TRACE32. (See fig. 11 and fig. 12)
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1% g oy [n,Gﬂm J[_F3Fid.._ | £ Chatt | & More J[ X Less |

i [B::Trace.List list.task def /track ] R B@. d address var ti.back Iti.zerp 1
D:PAS8: 1081279E 9.196us  -1.608us |~
(B 5eun. || bolo)_FaFnd_J[ 2= Charl % Mors )X Lew | ‘ : 5 .
record run address cycle data symbol ti.hack 1 é ggggg}ggig;gg giggﬂz _ig?gﬂ: =
—9a7349 P :A@A0 :CAAB3BAC K—felch ~d\ppcBxx_idle+BxEd  1.08Bns [~|iq | 1’pann:1am127a1 8.212us L rene
-AA7348 P : @000 :CAAR3BAC K-fetch ~d\ppcBxx_idle+lxEd  1.80Bns |- [ | plooonioootns o n o
- AA7I47 P :@BAA :CAAR3BAC K- Fetch .d\ppebxx_idledxEd  1.88Bns v [ | plooonioooti s 78-534”5
-AA7346 P : @000 :CAAB3BAC K-fetch -d\ppeBxx_idle+dxEd  1.008ns x| | lpoon iooeotns i3 =H:batus
— TASK = C#753410 sievedata ‘ames: bus - —0.488us
087345 AD:CAZ21E@A KUritel CB753410 AL runGuenes %20 55600 (2 [ D:B@8a:18m1z7A5 = B.212us _-B.136us
an7a44 Space 1D AABARASH 3 136us |4 [ D:0E8B:18B127A6 Sinewavel38] = @ @.196us  @.MPAus
@a7343 P :@856 : 18092088 - fetch .Aclock\UpdateClock  1.592us  [13 | D:Bu88:18012707 8.280us  B.280Hus
-pa7342 P 10856 : 100PASES |- feich _ata\main\maint@x54 21 .620us  [)2 | D:BE88:180177A8 8.212us  B.41%us
07341 P :0056 : 10081ABA |- Fetch .edataxsievenfuncs®  7.320us (11| D:8088:1080177A9 8.224us  B.636us
-AA7348 D:@B56:18312708 UNritel 64 _ta\Elnhal\Sineuave 3 RR4us 18 | D:@A8B:18B127AR 8.184us  @.820us
-Aa7339 D:8856:19A12789 UNriteB 77 10| B::Trace. STATISTIC.SYMBOL
-aA7338 D:@056:1081276A UNriteB 88 1ok
007337 D:@856: 18012788 UMriteB 97 ~lob Setwn. (i Grovps [ 88 Confia. [ QY Goto... | E|Listal | E]TREE [ #&{Chat | @ In
-AA7336 D:@856: 18312780 UNritel A4 1ot samples: 37513. total: 38.928s
address [total count ratiod |14 24 54 167
i : funchd | 27.2385 | 4388, (8/1) | 69.969%
Flgure 11 ) ppcﬁxx idle 5.46s 2. 13.913%
The samples obtained by IOgglng on __i'lush dcal:he icache 1.468s 1. 3.??ﬂf ——
A ) funci@ 1.385s 1384 . 3.3527 | —
selected points in the code allows i ieve sieve | 932.987ns 933. 2.3967, |me—
R r‘emnve vm_struct | 325.325ns 1. A.8357% |+
usage of Trace32 analysis tolls, func3 | 315.998ns 16, 0.811% |¢
distinguishing between kernel-space \func8 | 227.999ns 228. .585% ¢
d sieverfuncl | 21@.998ns 211. 0.542% |+
(K) and user-space (U). sieve_nain | 198.998ns 191 @498 |+

Depending on the type of application, the methods described may be sufficient to extract all the information
you need from within the code, using only the disassembly features provided within TRACE32 and with the
Powerlntegrator implementing a Bus Trace.

An alternative possibility is to rely on the Protocol Analysis technology, shown later in this document.

& T3ZNETNODE-192.168.1.104 DnEx]
File Edit Yiew Var Break Run CPU Misc Trace Probe Perf Cov MPCE3XX PILinuxLogger Linux ‘Window Help
HE +&¢ pu i 2N Hum e @: @M
A B::i.Chart.Draw %du.l Data /Filter a v. range(T32_MemTrace. totalsize) /steps ftrack g@
Ml Step || M Over || Mewt [ 4f Pstum)|_@ Up || B Go ]| LI Bresk || 2] Mods | Find ‘Tﬁsetup O Gioto...| 3 Find... £ Chatt |4 In ][4 Out] M Full 2 In | (X 0u)[Z Ful
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808 . ]
33 wemorypointer[0] = malloc{100); 3
34 memorypointer[1] = malloc{200); F|gure 12
35 wemorypointer[2] = wmalloc(300); 608 .
gl wenorypointer[3] = nalloc(0); The figure shows a realistic case of
38 wemorypointer[2] = realloc{wemorypointer[2], 100); 190 Data Logglng In uSer-SpaCe
40 for (i =4; i < 10; i++) { g . . .
o BT T T _— Specifically, the mechanism is applied
to the TRACE32 method of malloc
44| for (1= 0; i< 10; iw) { 8. analysis, which allows automatic
45 p = malloc(i + 1); J( [z . q
4 free(p); analysis of memory usage by a Linux
— process for debugging.
St Betora stant o daiony Hlockw i[O fictoe [ F3Eind (25 Cher |
recordvar |
51 strepy(memorypointer[0] - 1, "test"); :ggggg
/* wirite after end of mewory hlock */ _gggigg Hszggﬂi _iggig L
H ; -1, -~
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Protocol Analysis

When there is a need to monitor many signals, the most common reason is because they are part of a
transmission bus, a data bus or even any proprietary protocol communication bus, as often happens in
industrial applications.

Within TRACE32, the protocol analyzer technology allows the interpretation of data acquired from
Powerlntegrator through a dynamic library (DLL or shared object) and subsequent display formatting
according to a specific protocaol (i.e. the packets being transferred on an SPI bus).

The system currently supports protocols such as JTAG, I12C, SPI and Asynchronous Serial, but this can be
extended by the user to support any protocol by writing a specific library interpreter for the proprietary
protocol and then use TRACE32 functions to display the transmitted data. The principle of the interpreter is to
use a set of APIs as an interface to TRACE32, then to extract data from the PowerlIntegrator trace storage,
and finally processing and displaying them through TRACE32 environment windows.

The library must be designed following few very
specific rules: an initialization (PROTO_init)
PROTO INIT selects and prepares the channels that must
PI Storage = : _ | then be read by the API function
SELECT PARSE CHANNELS Hien el PROTO_Process (1) PROTO_readtrace and then passed through
_/' the processing functions (PROTO_Process),
DATA —t—"1

which can be deployed in up to 5 different levels

PROTO_P! 5 -
‘ rocess (5) Finally, the display functions (PROTO_display)
Display features /_{ e Dlsplay ) take the data passed by the processing functions

! showing the data in TRACE32 as a listing.
DATA DISPLAY / ‘

Level 1 ——"] The user can also define several Export
/ PROTO D'5p|ay (5) “ functions that allow the processed data to be
Lol 54— | saved in afile, with a customizable format.

PROTO_Export
| |

As an example of this capability, we used a program that sends commands through the SPI bus of the
MPC5554EVB to a voltage regulator, which turns the reference voltage V1, on and off and then observing the
voltage changes through the analogue probe. A nice feature to note is that in this case the synchronization
function of TRACES2 aligns the view of the SPI data to the analogue trace from the logic analyzer.

Again, this shows how the Powerlntegrator provides the essential correlation between hardware behaviour
and the software implementation, Another essential element is the extreme flexibility of the protocol analysis
technology, which is completely customizable by the user.

o4 B::i.draw %F.micro .V2A /T e BEI%
- &2 Setup... (=4 Name...|[ (Y Goto... ][ #Find... [ 4» In |[p4 OutlM Ful]| O OFF [ @ Am |
& Setup. (A Goto. [ §]Find.. ~793.820ns ~793.808ns ~793.780ns
B@Ans  —6A8 . ABANnS T 1 I" line | ! | i
VREF_1 | B || i.SCKe . . i . |
: = — e — ] " 1.MOSIo 1 _ 1 . T
| ] i.MISO« i - : : -
1.8 1 i.PCSG _ _ _ _ y
11 r < Ju>]<] 2]
! { B::i.proto .\SpiNEWAprotoSP. dll 1.sck i.mosi i.miso i.pcs5 0 0 LsBf0001 |- /(01
Figure 13 - — [ﬁ Setup...][n, Goto...][ $7Find... ] gl:hart & More || X Less

record |spare
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>
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or evice - ki =] or BEVIiCE - X ~
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Data Logger by Protocol Analysis

We have seen how a typical method of using a logic analyzer like the Powerlntegrator is to track the
performance of the software through the technique of Bus Trace. Providing the data needed for the
reconstruction of fetch and read/write cycles, through the direct monitoring of the system bus. Unfortunately
this method is not always applicable and in modern targets it's often impossible to get access to the bus
signals. As many processors now provide a real-time trace from the silicon core this is not always the
optimum solution, for example the ETM (embedded trace macro-cell) modules provided on ARM cores or the
Nexus3 trace provided by Freescale on the MPC55xx family of processors.

Another method in common use is to instrument the code, with careful implementation this can provide much
useful information. A typical method would be to call an appropriate function which provides information on the
last cycle executed by the CPU (within TRACES32 this functionality is known as “logger”). Reading out data like
this from most cores is intrusive and interferes with the cores real time performance. Thus the frequency with
which you call the logger must be set appropriately for the individual application, as we have already explained
earlier in this application note (see Data Logging ).

If this technique is implemented so that the information is made available via a hardware interface, it is
possible to use a custom protocol to pass the data to the Powerlntegrator, and then to use the protocol
analysis technology to display it in TRACE32, making use of the additional functions of trace storage analysis,
compared to the information provided by the disassembler itself.

This demo program will use an hardware resource, specifically the SPI bus, to pass information on code
execution and read/write cycles on data ranges.

In a similar way to what was done in the previous program, we will construct a protocol library whose second
processing level will transform raw SPI packets contained in Logger Data, storing the result in the API
structure of the Trace 32 programming environment.

The protoDisCycle structure contains the information necessary

t def =t t . .
ypEast shme to reconstruct a single system bus -cycle, if the Trace32 debugger

protoTine time; . s N . . .
Lratolordi? cycls: finds valid information; the tr_ace analys_ls functions such as listing,
unsigned char datampsk: charts and structure are available as if it had actually come from a
un=zigned char reswvi: . .

unsigned char flags: dedicated trace unit.

un=zigned char resw:
protollorded address:
protolorded data:

;rDtDDiSC?ClE xprotoliscyclel: static wuint3Z2_t spiCmndH. spiCmdl:

wold T3Z2_S5SFI_Log (char type. long address, long data )
{

if (t_spi_glob==0)
return;

<% =zend Synch packet *7
spilmdl=({SPI_CHD_SYNCH)|(type<<1|SYNCH_ODD) ;

In our sample program T32_SP1_Log, the DEPT & PUSHR B = =piCndl:

routine example shown, can be called at while (DSPI_&.SR.E.TCF != 1){}
each cycle as necessary. #% send Address packet *-
] ) spiCmdH=(SPI_CHD ADDRH) | (Xaddres=s&0=FFFFO000) 5516 ;
This will ensure that on the SPI bus selected spiCmdL={SPI_CHD ADDEL) | ((address&0z0000FFFF) ) ;
i K DSPI_A PUSHE.R = =piCmdH:
by PCSO0 on the MPC5554EVB information DSPI_& PUSHR.E = spiCndL;

4 . hile (DSPI_A4 SR B TCF I= 1
will be passed about the code execution. vhile (DSPI ¥
. s . . <% zend Data packet =~

At display level ‘1’ of our library, we will have if ({type==CYC FETCH}||(tvpe==CYC READ L) || {type==CYC_WRITE L)}

" " . . i

raw " SPI packets, as in the previous spiCmdH=(SPI_CMD DATh LH) I { tdata&l=FFFFO000)>>167;
; spiCmdl=(SPI_CHD DATA IL3]|({data&0z0000FFFF) .

example of protocol analysis. DEPI & DUSHR R = epiCmdH.

These packets are at a higher level of T

T
abstraction as shown by the routine code on SISCRE SNt ERSiEElESERADAS et wne e U TEESE Y

{
the right. For each bus-cycle, on the SPI bus spiCndl=(SPI_CHD DATA W)|(data&0=z0000FFFF) .
o DSPI_A.PUSHE R = spiCndL;
3 messages are sent: one descriptive ¥
. . .. el=e
synchronization packet, one containing the

i
ini spiCndL= (SPI_CMD_DATA_B)| (data&0x0000FFFF);
address, and one containing the data. DEPT 4 PUSHE R = spiCmdL.

T
while (DSPI_& SR.B.TCF = 1){}
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The second level of the protocol library puts the data inside the protoDiscycl e structure, which allows
display of the bus-cycles both in the protocol analyzer window and in the standard trace display windows such
as listing and charts (figure 14).
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It is worth comparing what has been done in this example of data logging using Protocol Analysis as
compared to the previous data from the Bus trace:

e It's clear that this solution uses far less resources than the hardware bus trace, in fact only 3
dedicated pins are utilized, compared to using the bus trace which needed the system bus
to be totally available.

e Theintrusion level in the code is higher, because the write operation in the sampled area
is no longer "atomic" (i.e. a single or a few bus-cycles), also it is using resources on the
chip’s peripheral and heavier glue code ( the SPI interface driver in this example).

There is always the possibility of optimizing this element possibly by reducing the load on
the processor, perhaps using more pins might be a good trade off.

e The trace depth is significantly lower, since using a software protocol involves an overhead
depending upon the complexity of the protocol (more samples are needed for a single bus-
cycle).

e Performances are comparable if, as in this example, you are able to use a fast enough
protocol

The two methods have similar fields of application, and the choice is usually defined by the physical
limitations of the project hardware, such as reduced access that makes it impossible to sample the entire bus,
the inability to use any spare pin(s) of the microprocessor, the need to retrieve the information with the least
possible intrusion, etc...
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Conclusions

In conclusion, the examples show how using Powerlntegrator can make a number of features available that
are very useful for debugging all kind of applications. Potentially providing direct observation of phenomena
related to either hardware or to code execution the PowerIntegrator can be programmed and adapted to work
with a wide spectrum of events to be monitored, or used to analyze some specific protocol.

All this is possible due to the concept of this logic analyzer and because it is integrated into the TRACE32
debug environment, or in other words because it has been designed to add into and upgrade any existing
Lauterbach setup, from the universal PowerDebug USB to the high performance PowerTrace Il latest
generation system.

Powerlntegrator is an indispensable tool which can find many uses in any development lab.

PowerlIntegrator — Technical Features

e Complex Trigger System e Trace Buffer from 512K x 204 Channels

e Trigger I/O Synch with debugger or 1024K x 102 Channels

e Protocol Analyser: e Disassembler for Bus trace
CAN, USB, 12C, SPI, JTAG, Serial e 3 Types of Digital Probes: Mictor, Samtec,
PCI, SDRAM + User Protocol Kit Standard

e Sampling Freq. fixed 250MHz, fixed e Analogue Probe: 4 Voltage, 3 Current Input

S00MHz, or by extemal clock « Probe for SORAM, PCI, DDR, ESICON



