
www.lauterbach.com1

API for VM Debugging Awareness

Since 2006, Lauterbach has supported the debugging
of Java applications for the Java Virtual Machines
J2ME CLDC, J2ME CDC and Kaffe. Since virtual ma-
chines are increasing in popularity, the number of
providers is growing. Nowadays not all of these virtu-
al machines are open-source. To enable VM providers
and their customers to adapt debugging flexibly for
their VM, Lauterbach has been working on a solution
since mid-2010.

The Android Dalvik Virtual Machine implemented for ARM
cores is used as a reference for the development of a VM
API for stop-mode debugging.

Two Debug Worlds

For developers, Android is an open-source software stack
consisting of the following components (see Fig. 5):

•	 A Linux kernel with its hardware drivers.
•	 Android Runtime with Dalvik Virtual Machine and a

series of libraries: classic Java core libraries, Android-
specific libraries, and libraries written in C / C++.

•	 Applications programmed in Java and their supporting
Application Framework.

Software for Android is written in various languages:

•	 The Linux kernel, some libraries, and the Dalvik
Virtual Machine are coded in C, C++, or Assembler.

•	 VM applications and their supporting Application
Framework are programmed in Java.

Each block of code is tested in its own separate debug
world.

Debugging C / C++ and Assembler Code

The Android part coded in C / C++ and Assembler can be
debugged on the target hardware over the JTAG interface
in stop-mode. In stop-mode debugging, the TRACE32
debugger communicates directly with the processor of
the Android hardware platform (see Fig. 6).

A characteristic of stop-mode debugging is that when
the processor is stopped for debugging, the whole
Android system stops.

Stop-mode debugging has some big advantages:

•	 It needs only a functioning JTAG communication
between the debugger and the processor.

•	 It needs no debug server on the target and is therefore
very suitable for testing release software.

•	 It permits testing under real-time conditions and there-
fore enables efficient troubleshooting for problems that
only occur in such conditions.

At present, stop-mode debugging does not support the
debugging of VM applications such as on the Dalvik VM.
Therefore transparent debugging through all of the soft-
ware layers is not yet possible.

Debugging Java Code

Java code for Android is usually tested with the
Android Development Tools (ADT) integrated into Eclipse.

Fig. 5:	 The open-source Android software stack.

Fig. 6:	 In stop-mode debugging, the debugger communicates directly with the
processor on the Android hardware platform.

www.lauterbach.com2

The adb server – adb stands for Android Debug Bridge –
on the host communicates over USB or Ethernet with the
adb daemon on the target (Fig. 7).

Prerequisites for debugging with ADT are VM applications
specially compiled for debugging and Android debug sup-
port (adb daemon) running on the hardware platform.

Debugging Java code with ADT is comfortable. How-
ever, there are a few cases in which ADT cannot help you.
These are:

•	 Errors that first occur with the release code.
•	 Errors that first occur when the Java application

interacts with a service offered in C / C++ or a Linux
hardware driver.

•	 Debugging following a communication breakdown
between adb server and adb daemon.

VM Aware Stop-Mode Debugging

To enable thorough testing of an Android system from
the Java application down to the Linux hardware driv-
er under real-time conditions, Lauterbach is currently
adding VM debugging awareness to its stop-mode
debugging.

The JTAG debugger communicates directly with the pro-
cessor on the Android hardware platform. The debugger
can therefore access all system information after the pro-
cessor stops. The “fine art” for the debugger is now to find
the correct information and make it easy to understand for
the user, abstracted from bits and bytes.

One abstraction level has given TRACE32 users the
option of debugging operating system software even over

several virtual address spaces. Another abstraction level,
up to now independent of operating-system debugging, is
Java debugging.

To debug applications running on VMs in systems like
Android, where the VMs themselves are instantiated
within the operating-system processes, operating-system
debugging and Java debugging now have to be combined.
To implement this new complexity, Lauterbach is develop-
ing a new, open, and easy-to-expand solution.

The Open Solution

In the future, stop-mode debugging from Lauterbach will
support the following abstraction levels:

•	 High-level language debugging
•	 Target-OS debugging awareness
•	 VM debugging awareness

High-level language debugging is a fixed component of
the TRACE32 software and is configured for a program
with the loading of the symbol and debug information.

Target-OS debugging awareness must always be con-
figured by the TRACE32 user. There are example configu-
rations available for all common operating systems. The
RTOS API provides an option to be customized for propri-
etary operating systems.

VM debugging awareness is a fixed component of the
TRACE32 software for J2ME CLDC, J2ME CDC and Kaffe.
All other virtual machines have to be adapted individually
with the VM API. A ready-to-use configuration is available
for the very popular Android Dalvik VM.

The open solution, both for the operating system
and for the virtual machine, enables providers of
closed-source VMs to write a TRACE32 VM aware-
ness for their product and offer it to their customers.

Dalvik is the name of the virtual machine used in
Android. The Dalvik Virtual Machine is a software
model of a processor that executes byte code de-
rived from Java. Virtual machines permit the writing
of processor-independent software. If you switch to
a new hardware platform, you only have to port the
virtual machine.

Software compiled for a VM runs automatically on
any platform to which this VM is ported.

Dalvik Virtual Machine

Fig. 7:	 The Android Development Tools (ADT) integrated in Eclipse for debug-
ging Java code.

www.lauterbach.com3

The Reference Implementation

To be able to debug on an ARM-based Android target
TRACE32 requires the following extensions (see Fig. 8):

•	 A Linux OS-awareness as provided by Lauterbach
since 1998.

•	 A Dalvik VM-awareness, which can be downloaded
from the Lauterbach homepage. This just has to be
configured for the platform used.

www.lauterbach.com/vmandroid.html

It is now possible to identify and list all Java applications
now being run (EXTension.VMList in Fig. 8) and to ana-
lyze and view the VM stack for a selected Java applica-
tion (EXTension.VMView in Fig. 8). The next step planned
is to display the source code currently being run by the
VM. The aim of the development is of course stop-mode
debugging for VM applications with all the functions of a
modern debugger.

Fig. 8:	 For the reference implementation, Linux OS-awareness and Dalvik VM-
awareness have to be loaded in TRACE32.

