
Lauterbach GmbH Altlaufstr. 40 D-85635 Höhenkirchen-Sieg. +49 8102 9876-0 marketing@lauterbach.com www.lauterbach.com

Profiling with Performance Counters
for TriCore™ AURIX™

 Andrea Martin, Technical Writer

Cache misses, data hazards and incorrect branch predictions have a negative impact on function run-
times. To investigate and minimize the impact of these events, the Infineon AURIX™ microcontrollers
TC27x/TC29x/TC37x/TC39x, with full MCDS, offer the capability of recording these events in the trace.
To demonstrate these features, Lauterbach showed that consequent analysis and adaption of the
code to the processor hardware leads to a significant reduction of the function runtime.

Before Optimization

Function runtimes

Stalls per function

Stalls per Function

To demonstrate the optimization steps, we have written
a test function TC1_computeSensorMetrics which
performs various calculations on a sensor array. It runs
on a TC397XA. For an initial overview, we configured
the MCDS so that trace information is generated for
core 1 which contains both the program flow and all
the stall events which occurred. To get the stall events
into the trace, one of the MCDS performance counters
has to be set up so that a trace message is generated
as soon as at least two stall events are counted. A
threshold this small allows the recorded stall events to
be assigned to the function causing it as accurately as
possible.

For large projects it is advantageous to use a TRACE32
PowerTrace Serial trace tool for this initial overview.
It can record up to 4 GByte of trace information via

the AGBT. It also offers the option of streaming the
trace information to a file on the host computer and
significantly increasing the recording time. If only the
2 MB on-chip trace is available, several test runs have
to be performed and accumulated in order to get all
the required trace data for the initial overview. After the
measurement is completed, a function runtime statistic
as well as a statistic that shows the number of stalls
per function can be displayed (see the two screenshots
in the showcase above).

Stalls in Detail

Functions can now be selected individually to be
examined in detail. In order to optimize these functions,
it is necessary to investigate the causes of the stalls.
For our example, we investigated whether the stalls
were caused by instruction cache misses, incorrectly
predicted branches or data cache misses. »

https://www.lauterbach.com
mailto:marketing%40lauterbach.com?subject=

Lauterbach GmbH Altlaufstr. 40 D-85635 Höhenkirchen-Sieg. +49 8102 9876-0 marketing@lauterbach.com www.lauterbach.com

The MCDS provides up to 16 performance
counters for this kind of in-depth diagnosis.

To be able to carry out the necessary
optimizations quickly it is important to identify
which instructions are causing the individual
stalls. The classic method of reconstructing the
program flow based on the trace messages for
all branches is not fine-grained enough for this
objective. The MCDS has to be set up in such a
way that it generates a program trace message
per MCDS clock. Infineon calls this SYNC trace.

Let‘s recap the whole thing.
• More event messages are needed for an in-depth

diagnosis.
• More program trace messages are needed to identify

the offending instructions.
• Additional trace messages like a read address message

might also be required for a detailed analysis.

Our tests have shown that such a measurement
generates so many trace packets that the AGBT port is
almost always overloaded. Therefore the on-chip trace
must be used. To make optimum use of the available on-
chip trace memory, it is recommended that the MCDS
is configured so that both the SYNC trace messages
and event trace messages are only generated for the
function currently being examined. This is possible by
simply setting the appropriate breakpoints.

In our test example we proceeded step by step. First, we
examined the data cache misses and optimized our test
function so that it used the data cache more efficiently.

Next, we examined the instruction cache misses
and the incorrectly predicted branches with the goal
of reducing the pipeline stalls to the unavoidable
minimum. We verified the result of our optimizations
again and again by means of the TRACE32
statistic commands. In the end, we were able to
reduce the number of stalls for our test function
TC1_computeSensorMetrics from 57981 to 19479 and
thus significantly improve the runtime of the function
(see the showcase below).

Conclusion

The possibility of recording the program execution and
the performance counters in the trace enables new
options for optimizing function runtimes. To be able
to optimize code at this level highlights the need for
engineers to have a good working knowledge of the
underlying processor hardware and features. To use
these new options, a TRACE32 Release Software of
at least 09/2020 is needed. This also contains our
test example bmc_trace_demo.cmm in the demo
directory. As always, our tools and analysis techniques
and options are adapted and expanded based upon
customer feedback and demands.

After Optimization

Function runtimes

Stalls per function

https://www.lauterbach.com
mailto:marketing%40lauterbach.com?subject=

