
www.lauterbach.com1

Debugging AMP and SMP Systems

Many multi-core processors can be used as either 
AMP or SMP systems. Depending on the mode of 
operation, different debug and trace concepts are 
applicable. In the following article, we describe how 
these concepts can be applied using TRACE32 to 
debug an ARM Cortex-A9 MPCore.

Debug Concepts

In discussion with our customers, we realize again and 
again that there are many varying interpretations of 
the two terms:

•	 AMP – asymmetrical multiprocessing
•	 SMP – symmetrical multiprocessing

Therefore we think it is worth taking the time to explain 
how these terms are used at Lauterbach and what 
effect they have on the configuration and usage of a 
TRACE32 debugger.

As the term “multiprocessing” implies, multiple cores 
are working together in an embedded system. What 
is crucial for debugging is how the system tasks are 
distributed to the individual cores.

Debug Concept for AMP Systems

In AMP systems, each core is assigned a specific task. 
How the tasks are distributed is determined in the de-
sign phase of the system. In addition to a standard 

controller (usually RISC architecture) specialized ac-
celerators (DSPs or customized cores) are frequently 
chosen.

When debugging AMP systems, an individual 
TRACE32 instance is started for each core (see Fig-
ure 4). There are two reasons for this:

1. An AMP system can contain different core architec-
tures.

2. Each core processes a separate part of the applica-
tion. This means that the majority of the symbol and 
debug information is assigned exclusively to the cor-
responding core.

However, because the cores do not work indepen-
dently, but perform the application task together and in 
parallel, it must be possible to start and stop all cores 
simultaneously. This is the only way to test the interac-
tion between the cores and to monitor and control the 
entire application. There are different ways to start and 
stop all cores simultaneously. Ideally, the multi-core 
processor will support this through internal synchro-
nization logic. If this logic is missing, TRACE32 takes 
over the synchronization process. A special algorithm 
calculates JTAG command sequences to control all 
cores as promptly as possible.

Fig. 4: When debugging AMP systems, an individual TRACE32 instance is 
started for each core.

Fig. 5: When debugging SMP systems, a single TRACE32 instance is 
started for all cores.



www.lauterbach.com2

Debug Concept for SMP Systems

In contrast to AMP systems, where the tasks assigned 
to each core are predefined, the assignment in SMP 
systems is flexible. In an SMP system, the system 
designer no longer assigns tasks to cores. An SMP 
operating system does this instead. All cores must be 
the same type to enable tasks to be assigned freely to 
each core as required. 

Task assignment is performed dynamically, meaning 
that the assignment depends on the current system 
status. A task unit that can be assigned by an oper-
ating system is called a “task” or “thread”. In simple 
terms, a task that needs to be processed is assigned 
to a core that is currently free.

For debugging SMP systems, only one TRACE32 in-
stance is opened and all cores are controlled from this 
one point (see Figure 5 on the previous page). Because 
the developer is primarily concerned with debugging a 
single task, the TRACE32 user interface displays the 
state of the entire SMP system from the perspective 
of this single task or from the perspective of the core 
where the task is running. Of course the visualization 
can be switched to other tasks or cores if required.

TRACE32 assumes a function that is similar to an SMP 
operating system. It organizes the debugging of all 
cores so that developers do not need to look into the 
details of the SMP system. For example, if a breakpoint 

is set, TRACE32 makes sure 
that the breakpoint is entered 
in all cores. This is necessary 
because at the time when the 
breakpoint is set, it’s not yet 
clear which core will execute 
the program section with the 
breakpoint. If a core stops at 
a breakpoint, all other cores 
are also stopped automati-
cally. The display in TRACE32 
switches to the task or core 

that hits the breakpoint. If the program is restarted, all 
cores start running together.

Debugging SMP systems with TRACE32 is easy. After 
a TRACE32 instance is started and configured for the 
SMP system, the developer essentially use it as if he 
were debugging only one core.

Trace Concepts

TRACE32 analyzes and displays trace information in 
different ways, depending on whether the trace data 
was generated by an AMP system or an SMP system. 
For AMP systems, trace analysis is largely performed 
on each core independently. The trace information for 
an SMP system, however, can be analyzed for a single 
task, a single core, or for the entire system, depending 
on the type of query.

Trace Concept for AMP Systems

Because debugging individual cores of an AMP sys-
tem is performed over separate TRACE32 instances, 
trace information is also displayed on these individual 
user interfaces. AMP systems can consist of different 
types of cores, so different trace protocols might be 
used. As the individual trace streams are displayed in 
the separate user interfaces, they can be individually 
decoded and analyzed.

To test the interaction of the 
cores and to quickly locate 
complex system errors, it is 
possible to display the individ-
ual trace views and also their 
relationship to each other over 
time. To do this, TRACE32 
PowerTrace provides a com-
mon time base. This allows the 
developer to select a point in 
time in the trace view on one 
user interface and see exactly 

Fig. 6: When tracing AMP systems, the trace information for each 
core is displayed on a separate user interface. Time syn-
chronization of the user interfaces is possible.



www.lauterbach.com3

which command was being executed by another core 
at approximately the same time (see Figure 6).

Trace Concept for SMP Systems

All information about the programs processed on an 
SMP system is stored in a shared trace memory for 
all cores (see Figure 7). One of the advantages of 
TRACE32 is that it provides different views of this in-
formation.

To locate errors in a task or for task-specific runtime 
measurements, trace information can be displayed 
specifically for an individual task.

If you want to know information such as “Which cores 
processed my task?” or “What is the run-time load of 
my cores?”, it can be useful to view the trace informa-
tion for all cores at the same time. Figure 8 shows an 
example of this view. The core number (0 or 1) indi-
cates the cores on which the individual program sec-
tions ran.

In order to examine the SMP system as a whole, it is 
not necessarily to know which core processed which 
task or program section. TRACE32 also provides dis-
play options for this type of view of the SMP system 
(see Figure 9).

During 2010, Lauterbach will continue to enhance 
the preparation and display of trace information from 
SMP systems. This will include new analysis functions 
based upon feedback from existing users and also 
new concepts currently in development.

Fig. 7: When tracing SMP systems, the information for all cores is stored in 
a shared trace memory.

Fig. 9: The trace analysis analyses the SMP system as a whole; which 
core processed which program section is unimportant.

Fig. 8: The trace analysis shows which cores processed the individual pro-
gram sections.


