

1 / 10

From the Debug Research Labs: Debugging Android

Hagen Patzke, Software Design Embedded Debugging, Lauterbach GmbH

Synopsis

Android comes with good support for developing and debugging: High-level (JavaTM) application debugging

is well covered by debug support in the Dalvik interpreter. Debugging “native” parts of the platform, like

system services written in C/C++ that run in their own process, can be done with relative ease with an

included GNU Debug Server. And if you want to port to a new platform, you can use mature hardware-

assisted debug tools for the initial debugging of low-level drivers and the kernel itself. So all is perfect - end

of article. Really?

Welcome to the other side, if you are a system developer who needs to track a bug that spans several of

these worlds. Or if you need to find a bug that does not show itself as soon as debug assistance is enabled.

Or perhaps you work with a production-stage or secure platform where no software-assisted debugging is

allowed. Here, things can become really difficult.

This article gives a short introduction to embedded debugging in general, covering the different abstraction

levels involved, and some special aspects of Android debugging.

The Platform

Android probably is such a success because it is a complete top-to-bottom integrated platform. Everything is

well specified to build a working, useful device. Furthermore, when GoogleTM made it available as "open

source", both an emulator and a real device, ARMTM implementation was provided that actually prove its

function in the real world.

At Android’s heart is a specially adapted Linux 2.6 kernel. This is what makes it tick and among lots of other

functions, it provides multi-threading for services and for virtual machine processes.

Native code and virtual machine programs together form the Android “system”.

Android Debug Inventory

Application developers are pretty well catered for: a very good

SDK is available and an active community provides support. With a

free Eclipse plug-in you can not only develop your JavaTM/Dalvik

application, but by using an extended version of the Java Wired

Debug Protocol (JWDP) via the Android Debug Bridge (ADB), with

aid from the Dalvik Virtual Machine (VM) and a debug daemon on

the device, you can also quite efficiently debug it.

The same is true if you write “native code”, e.g. to do application

code heavy-lifting in a service process. You can use a GNU Debug

Server to attach to your process and debug it.

Stop-Mode Debugging: The platform with all
operating system and application processes
is suspended in “debug mode”; all state is
frozen for inspection by the debugger. This
usually requires external debug hardware,
very often connected using a JTAG test
access port.
Run-Mode Debugging: The platform
executes the operating system and all tasks
that are currently not debugged. This mode
usually requires either changes to the
operating system, or at least a helper
application (a so-called “debug server”)
executed on the platform. Android has
several debug helpers: e.g. the Android
Debug Bridge Daemon (adbd) for managing
connections to the host, built-in Dalvik VM
debug support, and a GNU Debug Server
(gdbserver) for native processes.

2 / 10

If all you need is this type of “platform assisted run-mode debugging”, you will be fine. Happy coding and

debugging!

High-level languages that are not compiled, but interpreted, like JavaTM, need help from their Virtual Machine

(VM) interpreter for debugging. This is also true for Android and if you stop the physical machine, the

communication link between the external Java/Dalvik debugger and the debugged application is disrupted.

“Assisted” Virtual Machine (VM) application debugging

The same is true for external native code debugging - if you stop the operating system kernel also the

provided GNU Debug Server process is halted.

You might be a system developer porting Android to a new platform. Or building new low-level services that

interface closely with very low (device) and very high level (GUI) components. Most of the time debugging

these individual system components separately will work well enough.

But imagine you need to change core components such as the network stack. As soon as you hit a

hardware breakpoint in its low-level driver, you lose all network communication between host and target,

rendering the network-based debug assistance inoperative. Or what if you need “post-mortem” debugging,

i.e. hooking up to a “frozen” device to see what happened?

In this case you want both "native debugging" plus "Java debugging" integrated into the same hardware

debugger, to track and shoot the difficult-to-find bugs that span the worlds.

3 / 10

Debugging and Tracing Basics

Before we delve into the different debug “building blocks”, let us think a moment about what the basic

function of any debugger on an embedded platform or “target” is:

A debugger maps a snapshot of a physical machine's state to an abstraction on one or more levels that are

a virtual representation of the programmer's intent. (Please continue breathing.)

Put bluntly, you are not thrilled about a program counter value of 0x123456, but want to see that this is in

line fourteen of your MP3 player source code. You are also not interested about value 0x1003 in processor

register number three, but it can be crucial to know that this means “playback_active” for the state machine

of the application.

It is also useful to “trace” program execution over a period of time, e.g. for “profiling” to find out where the

execution time is spent in an application and for infrequently occurring bugs. For this, “program trace” and

“system trace” hard- and software are available. On some platforms you can not only trace program counter

values (or branches) over time but also changes in data memory. As the program of a virtual machine is just

ordinary data for the physical machine that runs the virtual machine (VM) interpreter, data trace capability is

very useful if you have a VM.

To sum up, a “debugger”s core task is to map raw memory and register data to something that is meaningful

for you. Recording (selected) system state changes over a period of time is called “tracing”, and this is

useful for identifying performance bottlenecks or for finding intermittent bugs.

Target and Host

On a PC, most application debugging is done with software debuggers that run inside the very same

machine that also runs the application and the development framework. Most operating systems and the PC

architecture itself, actively support this type of "software-based" debugging.

Embedded platforms are different: Most target devices are constrained in processing power, memory and

available interfaces. Therefore development and debugging for them usually take place on an external

"host" machine that is powerful enough for the job.

Now think a moment about your embedded device infrastructure (boot loader, drivers, operating system).

Whatever it is, you need to build the software, which often means “cross-compiling” for your “target” device

architecture; more often than not the PC “host” and the target architecture are not the same. Then you need

to load it onto the embedded device.

Finally, you can start your software and debug it. This can be an application, if everything else is OK, or you

may need to debug the infrastructure first, because something went wrong before the start-application code

could execute. The traditional PC approach of "debug on the platform itself" does not really work here.

In the embedded world, one standard method to load and debug software is connecting the target via a

hardware interface like JTAG (IEEE1149.1) to external debug hardware. This in turn is controlled by a

graphical user interface (GUI) running on the "host". Via the GUI or using a script language you can change

its memory content to “download” software onto your target and then execute and debug your system and

application.

4 / 10

Native Code Debugging

Let's look at the mapping of machine state to abstraction levels. Lowest are on-chip signal and voltage

levels. One level up are bits in registers and in memory. Another level up you look at numbers (represented

e.g. in decimal or “hex”). On the next level you can finally see assembly language instructions. This is where

unaided debugging stops.

Luckily modern compilers emit "debug info", mapping assembly locations to high-level language (e.g.

C/C++) source code lines. Other “debug records” map logical data types to the data layout in memory. This

additional debug information makes program files pretty big, but without it bug-hunting is mostly "poking in

the dark": you really want to map the current program counter to a line in a high-level language source file.

Only then you can see what's going on in the “native machine” code running on your physical processor

core, and on the abstraction level you desire.

What can you do with a native code debugger? In short: selectively start and stop program execution on the

available processor core(s), inspect and manipulate memory, core and peripheral device registers, and set

and delete breakpoints (to stop your program at a predetermined location).

Numerical (code) and Assembly Language (mnemonic) abstraction levels

5 / 10

Mixed Assembly Language and High-Level (C) Language abstraction level

High-Level (C) Language abstraction level

6 / 10

Kernel Debugging and OS Awareness

Enter the operating system kernel. Modern platforms support multi-tasking and multi-threading, i.e. more

than one program or process can be executed at the same time. This is also true for single-processor cores,

the operating system just gives every process a “time slice” and then switches to the next one.

Now you have not only one application that is easy to find and debug, but multiple applications running at

the “same” time. Maybe even multiple instances of the same application are active at once of which you

want to debug only one.

As we discussed, pure "native code debugging" nicely allows you to find problems in operating system boot

code, device drivers, or in low-level constructs like the task scheduler.

However, if you want to know in which part of program memory your current application process executes

and where its instance variables are (you may have more than one running, right?), you need the debugger

to “know” the operating system. You need a debugger that has "OS awareness".

Well, for a debugger this is actually not quite so easy to provide. Unlike processor cores and high-level

language compilers (C/C++, for example), the operating system (OS) itself might not be a fixed "off the

shelf" entity like it is on most PCs. In the embedded world the OS is often something you need to actively

change and adapt to build a new competitive product.

An OS you can change is a "moving target" for debugging, and this makes it necessary to configure and

adapt the debugger "OS awareness" to your very own operating system variant.

This became apparent when embedded Real-Time Operating Systems (RTOS) became popular, and in

response Lauterbach implemented a "TRACE32 Extension" mechanism, complete with an Extension

Development Kit (EDK). With this we can either adapt an existing OS awareness (e.g. for Linux), or a

customer can write their own, if this is necessary.

Linux Kernel Tasks

7 / 10

Linux Process Display

Process Display with VM Application Names

8 / 10

Virtual Machines...

Processors have become more and more powerful. This has made it possible to abstract even the

hardware–Virtual Machines (VM), formerly a domain of big mainframes, arrived in the embedded world.

If you run code in a Virtual Machine (VM), instead of executing native machine code directly on a processor,

you run a piece of software that emulates another “virtual” machine.

Such a VM has several advantages: the code written for it can be executed on any (other) real processor for

which you have an implementation of the VM. Also you can change and tune the VM architecture for specific

needs (e.g. stack vs. register based machine, higher security, etc.). Then you can optimize the internal VM

operations and instruction code as needed. Last but not least you could actually consider building the VM as

a new-generation real machine in hardware.

You probably already use a VM on a daily basis: many cell phone providers chose to use JavaCardTM smart

cards as their SIM. They now can use smart card hardware with different processors and hardware, and

from different vendors, but still keep software updates manageable. Interpreted JavaTM bytecode is also

inherently more secure than native machine code.

Of course VMs also have drawbacks. One of them is speed: the VM itself is a software program that has to

interpret a stream of data as VM instructions. This is slower than directly executing native machine code on

the processor core, and if the VM implementation is not "correct", you might even get security problems.

Luckily for us, people will always manage to introduce bugs, this is also true for VM code. So there is a need

for virtual machine (VM) debugging, which has its own advantages and problems.

...and VM Debugging

One option is adding debug support directly to the Virtual Machine (VM) itself. Then e.g. a special “Debug

Interpreter” can handle the debugging requests. Android is an example for such an implementation, and this

usually works well for pure JavaTM application debugging. But what do you do if you can't use this, because

the bug does not show when the “VM Debug Interpreter” is active? Or if you have to debug interactions

between VM and Linux kernel?

In this case, you debug in “stop-mode”. To find out which program currently runs in the Virtual Machine and

which values its variables and objects have, you first need to read the memory content of the real machine.

Then the debugger must find, analyze and interpret the data structures of the VM itself and of the

application's object data to give a good “VM abstraction level” view of the system and its state.

One of the challenges for VM debugging is (like for operating system kernels) that any VM itself is "just a

piece of software" which can and will be adapted to the needs of the final product. Any major change of the

VM code and its data structures must be matched by the debug tools, or the interpreted information will be

useless.

Android is an excellent example of this: the application developer writes code in Java, but the Dalvik

bytecode generated from its class files could never run in a standard JavaTM VM. Any standard JavaTM

debug tool will therefore not be able to display anything meaningful.

9 / 10

For the processor itself, Dalvik VM “program code” is just data. Therefore a “program trace” that works well

for native code is not useful for VM tracing or profiling. For this task you need data trace capabilities (or

some very clever trickery).

Providing VM debug support without any help from the target is very difficult: at Lauterbach we are currently

researching unassisted and integrated Native/VM debugging. Part of the solution will be a “TRACE32 VM

Awareness Extension” that can be adapted by a customer to any changes in the VM. This will make generic

VM support possible.

Sample Android Debug Session

10 / 10

 Android Debug Session with OS Awareness Menu

Boards

Our South Korean partner MDS Technology Co., LTD provided us with MEP-6410(M6R2) ARM11TM

Reference Boards and with an Android operating system port.

At the heart of the MEP-6410(M6R2) is a powerful ARM1176JZF-STM in a Samsung S3C6410 SoC. This

ARM11 Reference Board features a 3.5 inch 320x480 LCD with touch screen optimized for Android, 128MB

NAND FLASH and 128MB RAM, Ethernet interfaces, camera, USB, UART and plenty of other useful

hardware for development. Also it includes a connector for JTAG debugging.

If you are on a more constrained budget, I suggest you check out one of the available BeagleBoard kits (e.g.

EBVbeagle). Here you get an ARMTM CortexTM A8 plus DSP within a TITM OMAPTM3530. No Ethernet or LCD

are on the board itself, and depending on its revision you may have to do some Android adaptation work,

but it comes for very little money.

Conclusion and Outlook

Available today are the very first steps of Virtual Machine (VM) debug support. For Dalvik VM debugging on

Android, knowledge about Linux processes is essential, as each VM application runs in its own process. Our

Linux Awareness interprets memory structures to give you an idea what the Linux kernel was doing at the

moment the system was halted, and it can now extract and display Dalvik VM application names.

Research and development are in progress to bring “VM awareness" to Lauterbach's TRACE32 range of

debugging tools. Android on ARMTM will be the first platform with VM awareness, and in a few months you

can expect a ramp-up of Native/VM debug capabilities.

Published: IQ Magazine Volume 9, Number 1, 2010

