LEADING through Technology LA UTE R BACH .

From the Debug Research Labs: Debugging Android
Hagen Patzke, Software Design Embedded Debugging, Lauterbach GmbH

Synopsis

Android comes with good support for developing and debugging: High-level (Java™) application debugging
is well covered by debug support in the Dalvik interpreter. Debugging “native” parts of the platform, like
system services written in C/C++ that run in their own process, can be done with relative ease with an
included GNU Debug Server. And if you want to port to a new platform, you can use mature hardware-
assisted debug tools for the initial debugging of low-level drivers and the kernel itself. So all is perfect - end
of article. Really?

Welcome to the other side, if you are a system developer who needs to track a bug that spans several of
these worlds. Or if you need to find a bug that does not show itself as soon as debug assistance is enabled.
Or perhaps you work with a production-stage or secure platform where no software-assisted debugging is
allowed. Here, things can become really difficult.

This article gives a short introduction to embedded debugging in general, covering the different abstraction
levels involved, and some special aspects of Android debugging.

The Platform

Android probably is such a success because it is a complete top-to-bottom integrated platform. Everything is
well specified to build a working, useful device. Furthermore, when Google™ made it available as "open
source", both an emulator and a real device, ARM™ implementation was provided that actually prove its
function in the real world.

At Android’s heart is a specially adapted Linux 2.6 kernel. This is what makes it tick and among lots of other
functions, it provides multi-threading for services and for virtual machine processes.

Native code and virtual machine programs together form the Android “system”.

Android Debug Inventory

S . Stop-Mode Debugging: The platform with all
Application developers are pretty well catered for: a very good operating system and application processes

SDK is available and an active community provides support. With a | is suspended in “debug mode™; all state is

. r ™ . frozen for inspection by the debugger. This
free Eclipse plug-in you can not only develop your Java "/Dalvik usually requires extemalldob Gl IR

application, but by using an extended version of the Java Wired very often connected using a JTAG test
; ; ; ; access port.
ngug Protocol (..JWII.)P) via the Andrmd Debug Bridge (ADB), with Run-Mode Debugging SiNSI e
aid from the Dalvik Virtual Machine (VM) and a debug daemon on executes the operating system and all tasks
the device, you can also quite efficiently debug it. that are currently not debUGACESIINEEIEEE
usually requires either changes to the
The same is true if you write “native code”, e.g. to do application operating system, or atlicasiSINEI.
S . application (a so-called “debug server”)
code heavy-lifting in a service process. You can use a GNU Debug | executed on the platform. Android has
rver h r or n it. several debug helpers: e.g. the Android
Server to attach to your process and debug it Debug Bridge Daemon (adbd) for managing
connections to the host, built-in Dalvik VM
debug support, and a GNU Debug Server
(gdbserver) for native processes.

www.lauterbach.com 1/10

LEADING through Technology L A UTE RBACH

If all you need is this type of “platform assisted run-mode debugging”, you will be fine. Happy coding and
debugging!

High-level languages that are not compiled, but interpreted, like Java™, need help from their Virtual Machine
(VM) interpreter for debugging. This is also true for Android and if you stop the physical machine, the
communication link between the external Java/Dalvik debugger and the debugged application is disrupted.

Target Host
VM Process
2o Eclipse IDE
Daivik VM | & & ADT
interpreter |2 e 1 |
0 =
D © adb adb
- daemon server
VM application
- bytecode I I
- objects network network
stack stack

“Assisted” Virtual Machine (VM) application debugging

The same is true for external native code debugging - if you stop the operating system kernel also the
provided GNU Debug Server process is halted.

You might be a system developer porting Android to a new platform. Or building new low-level services that
interface closely with very low (device) and very high level (GUI) components. Most of the time debugging
these individual system components separately will work well enough.

But imagine you need to change core components such as the network stack. As soon as you hit a
hardware breakpoint in its low-level driver, you lose all network communication between host and target,
rendering the network-based debug assistance inoperative. Or what if you need “post-mortem” debugging,
i.e. hooking up to a “frozen” device to see what happened?

In this case you want both "native debugging" plus "Java debugging" integrated into the same hardware
debugger, to track and shoot the difficult-to-find bugs that span the worlds.

www.lauterbach.com 2/10

LEADING through Technology LA UTERBACH

Debugging and Tracing Basics

Before we delve into the different debug “building blocks”, let us think a moment about what the basic
function of any debugger on an embedded platform or “target” is:

A debugger maps a snapshot of a physical machine's state to an abstraction on one or more levels that are
a virtual representation of the programmer's intent. (Please continue breathing.)

Put bluntly, you are not thrilled about a program counter value of 0x123456, but want to see that this is in
line fourteen of your MP3 player source code. You are also not interested about value 0x1003 in processor
register number three, but it can be crucial to know that this means “playback_active” for the state machine
of the application.

It is also useful to “trace” program execution over a period of time, e.g. for “profiling” to find out where the
execution time is spent in an application and for infrequently occurring bugs. For this, “program trace” and
“system trace” hard- and software are available. On some platforms you can not only trace program counter
values (or branches) over time but also changes in data memory. As the program of a virtual machine is just
ordinary data for the physical machine that runs the virtual machine (VM) interpreter, data trace capability is
very useful if you have a VM.

To sum up, a “debugger”s core task is to map raw memory and register data to something that is meaningful
for you. Recording (selected) system state changes over a period of time is called “tracing”, and this is
useful for identifying performance bottlenecks or for finding intermittent bugs.

Target and Host

On a PC, most application debugging is done with software debuggers that run inside the very same
machine that also runs the application and the development framework. Most operating systems and the PC
architecture itself, actively support this type of "software-based" debugging.

Embedded platforms are different: Most target devices are constrained in processing power, memory and
available interfaces. Therefore development and debugging for them usually take place on an external
"host" machine that is powerful enough for the job.

Now think a moment about your embedded device infrastructure (boot loader, drivers, operating system).
Whatever it is, you need to build the software, which often means “cross-compiling” for your “target” device
architecture; more often than not the PC “host” and the target architecture are not the same. Then you need
to load it onto the embedded device.

Finally, you can start your software and debug it. This can be an application, if everything else is OK, or you
may need to debug the infrastructure first, because something went wrong before the start-application code
could execute. The traditional PC approach of "debug on the platform itself" does not really work here.

In the embedded world, one standard method to load and debug software is connecting the target via a
hardware interface like JTAG (IEEE1149.1) to external debug hardware. This in turn is controlled by a
graphical user interface (GUI) running on the "host". Via the GUI or using a script language you can change
its memory content to “download” software onto your target and then execute and debug your system and
application.

www.lauterbach.com 3/10

”~

LAUTERBACH {

Ul = JULO 4

Native Code Debugging

Let's look at the mapping of machine state to abstraction levels. Lowest are on-chip signal and voltage
levels. One level up are bits in registers and in memory. Another level up you look at numbers (represented
e.g. in decimal or “hex”). On the next level you can finally see assembly language instructions. This is where
unaided debugging stops.

Luckily modern compilers emit "debug info", mapping assembly locations to high-level language (e.g.
C/C++) source code lines. Other “debug records” map logical data types to the data layout in memory. This
additional debug information makes program files pretty big, but without it bug-hunting is mostly "poking in
the dark": you really want to map the current program counter to a line in a high-level language source file.
Only then you can see what's going on in the “native machine” code running on your physical processor
core, and on the abstraction level you desire.

What can you do with a native code debugger? In short: selectively start and stop program execution on the
available processor core(s), inspect and manipulate memory, core and peripheral device registers, and set
and delete breakpoints (to stop your program at a predetermined location).

/ B::Data.List (=) (=) (=)
M Step | M Ower | § Mext | ¢ Retun| & Up | » Go | 1N Break | B Mode |
addr/ Tine Code | Tabel [HELLTRES [comment =
ZUR:0783:AD0OT31E4 [E2520000 cmp r2 . #0x0 -
ZUR 0783 :ADO13168 |E2A01000 mow r1,#0:=0
ZUR:0789:AD01316C [OAFFFFIA beg 0=A0012FDC
ZUR:0783:ADO13170 |- e Tdr r4.[r0, #0x4]
ZUR:0783:AD013174 [ESHE301H Tdr ra,[r&.#0=18]
ZUR:0789:AD013178 |ESEc2010 str r2,[r&. f#0=10]
ZUR:0789:AD01317C [ESE35020 str r5.[r3, #0x2C]
ZUR:0783:AD0OT3180 [ES921000 Tdr r1.0r2]
ZUR:0789:AD013184 |E1F450BE ldrh r8,.[r4.H#0=6]!
ZUR:0789:AD0O13188 [ES9 11028 Tdr r1.0r1, #0:28]
ZUR:0783:AD01318C [E20SCOFE and ri12,ra, #ixFF
ZUR:0789:AD013130 (ESEET0T4 str r1,.[r&. #0=14]
ZUR:0783:AD0131584 |E087F20C add pc,r7.r12,1s1 HOxE
ZUR:0783:AD0O13138 [EZA00002 may ri,#0x2
ZUR:0783:AD0O1313C [E3A0S000 Moy ra.#0x0
ZUR:0789:AD013180 |EEFFFEVE bl 0xA0012F94
ZUR:0783:AD013144 [ESHEADTE Tdr r10,[rE, #0x18]
ZUR:0783:AD0OT31A8 [ES923020 Tdr ra.[r10,#0%30]
ZUR 0783 :ADOTI1AC |ETADTOOA cpy ri,r10 7|
1R I Tl

Numerical (code) and Assembly Language (mnemonic) abstraction levels

www.lauterbach.com

' through Technology LAUTER BACH l‘

DEVELOPMENT TOOLS

M Step | M Over | § Mext | ¢ Return| ¢ Up | B Go | I Break | ¥ hode |

addr/ 1ine code | Tabe [mnemonic |comment =
return NOTIFY_DONE; N
=k | I
ZSRIFFFF:CODBZ824) |E23DARFD Hia r13,ird-r?7,r11,r13,pc
ZSR:FFFF:COOB2828) (CO424E14 ded O=C0434E 14 —!

fifdef CONFIG_FM
tinclude {limux/syedev.h>

static int wip_pn_suspend{ztruct sys_device *dev, pu_me

329
ZSR:FFFF:CO06282C] [E1ADCOOD wip_pi_s.:cpy r12,r13
ZSR:FFFF:CO062830) [ES20DE10 stmdb r130, Erd,r11-r12, 114, ped
ZSR:FFFF:C0062834| |[E24CEOO4 sub ri1,r12,#0x=4
ZSR:FFFF:CO0BZ2838| |E240D004 sub r13,r 13, #0x=4

atruct thread_info #ti = current_thread_infol);

331 u32 fpexc = fmrx(FPEAC);

ZSR:FFFF:CO0B283C) [EEFG4A10 fmrs r4,fpexc
JET] g

Mixed Assembly Language and High-Level (C) Language abstraction level

M Step | M Over | § Mext | ¢ Return| ¢ Up | » Go | Il Break | ¥ Muode
[

addr/ 1ine Source [

| —
ztatic inline woid write_seqlock(seqlock_t #z1) n

b3 ++5l-FERUENCE ;
G4 zmp _wnkl)
F
static inline void write_sequnlock(seqlock_t #s1)
&9 Fmp _wnk ()
70 2l-rgequence++;
71 spin_unlock! &zs1->lock);
i

ztatic inline int write_tryzeqlock(zeqlock_t #zl)
1
int ret = spin_trylock(&sl->lock);

I | 2l

High-Level (C) Language abstraction level

www.lauterbach.com

LEADING through Technology LA UTERBACH

Kernel Debugging and OS Awareness

Enter the operating system kernel. Modern platforms support multi-tasking and multi-threading, i.e. more
than one program or process can be executed at the same time. This is also true for single-processor cores,
the operating system just gives every process a “time slice” and then switches to the next one.

Now you have not only one application that is easy to find and debug, but multiple applications running at
the “same” time. Maybe even multiple instances of the same application are active at once of which you
want to debug only one.

As we discussed, pure "native code debugging" nicely allows you to find problems in operating system boot
code, device drivers, or in low-level constructs like the task scheduler.

However, if you want to know in which part of program memory your current application process executes
and where its instance variables are (you may have more than one running, right?), you need the debugger
to “know” the operating system. You need a debugger that has "OS awareness".

Well, for a debugger this is actually not quite so easy to provide. Unlike processor cores and high-level
language compilers (C/C++, for example), the operating system (OS) itself might not be a fixed "off the
shelf" entity like it is on most PCs. In the embedded world the OS is often something you need to actively
change and adapt to build a new competitive product.

An OS you can change is a "moving target" for debugging, and this makes it necessary to configure and
adapt the debugger "OS awareness" to your very own operating system variant.

This became apparent when embedded Real-Time Operating Systems (RTOS) became popular, and in
response Lauterbach implemented a "TRACES32 Extension" mechanism, complete with an Extension
Development Kit (EDK). With this we can either adapt an existing OS awareness (e.g. for Linux), or a
customer can write their own, if this is necessary.

D :TASK.DTas! HEE
mag1e command state uid pid spaceid [tty [flags =i
C78FEC20 (30,0 sTeeping 1] 265. | 0000 0 84208040 Akl
C791F300 nfsiod zleeping 0 274, | 0000 0 |g0208040
C788ECEN mtdblockd sleeping 0. 951.| 0000 0 |B0208540
C7AFBI00 kpsmoused sleeping 0. 933. | 0000 0 80208040
C731FSEQD |rpciod/0 sleeping 0. | 1063. | 0000 1} 84208140
C791E320 |sh sleeping 0. | 1867. | O74B 1} oo400000
C791E640 |servicemanager sleeping 1000, | 1868, | 074C 0 00400100
CP31E000 [eold sleeping 0. 18E9. | 074D 0 |00400100
C7I1ECED |debuggerd sleeping 0.| 1870. | 074E 0 00400000
C7I1EFAD |r11d sleeping 1001. | 1871. | 074F 1} oo400100
C731F2C0 [app_process sleeping 0. | 1872, | 0730 1} oo4o00100
C?91FC20 mediaserver sleeping 1013. | 1873. | 0791 0 00400100
C791E960 |dhus -dasmon sleeping 1002. | 1874. | 0752 0 00400100
C7E8EFAD [installd sleeping 0. 1875.| 0753 0 |00400100
C7886000 jadbd sleeping 0. | 1877. | 0735 1} oo400100
C7BA0CE0 app_process sleeping 1000. | 1901. | 076D 1} oo400140
C70D1C20 japp_brocess sleeping 1001. | 1938. | 0792 0 |00400140
CPE1E320 japp_process sleeping 10005. | 1940. | 0734 0 oo400140
C7EBOCEN app_process sleeping 10009. | 1964. | 07AC 0 00400140
C7FOSSED [app_process sleeping 10000. | 1981. | OFED 1] 00400140
C7FEFC20 [app_process sleeping 10008. | 19594. | 07CA 1} oo400140 N
C7FDEB40 [app_hrocess sleeping |10010. | 2014. | O7DE 0 |00400140
C384A320 [app_process sleeping 10005. | 2022. | O7ER 0 oo400140
C3BAB000 app_process sleeping 10012. | 2038. | OFF6 0 00400140 7|
-]] =]

Linux Kernel Tasks

www.lauterbach.com

LAUTERBACH

°r.

Mag1c Command #thr [state Spaceid
CO409970 swapper 20. |current oooo
7818000 init - |sleeping oot
C791E320 sh - |sleeping 0748
C791EG40 Servicemanager - |sleeping 074c
C731E000 vold - |sleeping 0740
C791EC20 debuggerd - |sleeping 074E
C7I1EFAD rild - |sleeping 074F
C731F2C0 app_process - |sleeping 0750
C791FC20 mediaserver - |sleeping 0751
C731E960 dhus-daemon - |sleeping 07s2
C7886 FAD installd - |sleeping 0753
7286000 adhid - |sleeping 0755
C78A0C20 app_process - |sleeping 0760
CPOD1C20 app_process - |sleeping 0742
CPE1E320 app_process - |sleeping 0794
C7EBOCE0 app_process - |sleeping 07AC
C7FOS5ED app_process - |sleeping 07ED
C7FE7C20 app_process - |sleeping 07CA
C7FDER40 app_process - |sleeping 070E
(3844320 app_process - |sleeping 07EG
C38AE000 app_process - |sleeping 07F&
|

Linux Process Display

A TRACE32 EEa B::area (=) (x)
File EdR View Var Break Rwn CPU Misc Trace Pef Cov Linwx Window Help =
Ml %] |« »fm| 7N &
3 e e e B s T ——
Nane mode option se
el file '/anur?mltgzéhmvm 0 U oy
scanning Dalvik 1ibrary Mil.
Threading: Toroup
emolate | wigger | devices | wace | Dalm | var | List | PERF | S¥Stem | other | previons | Mame mode option set Ll
one..
ZSR0000:COTB7100 NWMINUMS3Cr_TimeA: [swapper [stopped (nside ing) (B T o]
¥ Bbata et IEIE) Y DE[A e il
Stey Over Next Return 1] PG | Eveak] Mode | Fing: - RO FE 50027318 SP- CO407EEC [| [fmeinfo)
"a - Wl‘ L ‘ :WE ‘f ‘ ¢ b | ‘] NEz 7 comsols fo anirame i coiaeeas showsTab
dd e m = =l 710 50027264 40 COMD7EAS active / Total objects (%
R e———— T T F Rl e
unsigned int b start address, fb_end address; F” RS 17 CO407EA0 -4 00000100 Active / Total Size (s use
308 SE (s3efb_infols3cmh_fiud palette vin] paletteveady| || = 1o O e Sengosraal o a0j000cd it & e 4 Tl Wi S
309 sdcth_vrite_palettelésdcib_infolsdcib find.p i | [,2 SpsR ADODOD13 CPSR 60000113 -28 00000000 OBTS ACTIVE USE 0BT SIZE
311 for (4 = 05 3 ¢ CONFIG F3SOCAWIG 400) BR Fra: i (e e e e
312 (sBcfb*ngoL:\J net b dufo_change rea) L0 [£ 7 pa'" sonorate ma 0 -iC 50027318 3808 3733 935 0.14K
TRl iy EY 410FE7EE R9 0 -5 410FE7EE 2434 2484 100% 0.44K
st et bl L8 B ci et b _ Ri0 500272E4 RID 0 -14 S00272E4 1932 1833 9% 0.03K
- PPRTOR | S o [
B2 R13 40107ES0 R13 0 06 0092728 904 837 35 0.50K
s) . F14 AFETZ1BS 414 0 04 CO1B70F4 784 783 98B 0.55K
319 s3cfh_infal1].5h. fix.snen_len = s3ct i I A B R
+04 DD00003E 575 527 91% O.1BK
sue: IRQ: 02 C78713C40 546 469 858 0.09K
i sep e ol || 1 aume I emn HSERN) B B R
= N SPST ARDRODTS SPR ADDDDIST |4 CO407FRE 384 373 978 0.03K
1 71| g T
Y B::TASK.Process [=)(e) (=]
mag 1< command Ehr [state spaceld uwds [= [ragic T state uid _[pfd [spaced
0403970 |5 swapper 20. |current | 0000 ~ 3. 4. || [C35A6960 ny.andr:2040 s leeping |10012. | 2040
7818000 /init - |sleeping | o001 | 1.
C791E320| /system/bin/sh Sleeping | 0748 oid vm size tib tty name path
CROTEEAD| /systonbin/servicenanager - |sleeping | 074C ottt IR systen/bin/app process
CP9TEDD0 Asystem/bin/vold - |sleening | 074D
CrITECan sevstenhin/detuagerd - |sleeping | 074E o (120c; FORANOEKEC RADOMIZE
eraniel oo by 3. [sleeping | o74F = oungest child younger sibling older sibling
Cr31F2C0 =" |sleeping | 0750 | 1872, E TOW HEaEMarRer
CT9TEed0 i Faoatanrbin/uediaserver 19, [leeping | 0751 | 1873. 1881, araunents
C731E3R0 | /system/bin/dbus-daemon - sleeping | 0752 | 1374. environment
Cr8EEFAD | /systen/bin/installd - |sleeping | 0753 | 1875, open Ti
Crage0n0 & /sbin/adbd 2, [sleeping [o0735 | 1877, 187e. Ml |8 code addrisize data addr/size stack start
C78A0CB0 & system server 33.|Sleeping | 076D | 1301 1302 00005000 / DOOOOEBC 00003000 / 000001EE BECEAD00
CPDD1C20 1 com.androtd.phone 14, |<leening | 0792 | 1938, 1933 o code fi1 start address flags
CPE1E320 | android. B e 9. [sleeping | D784 | 1340. 1341. app_process EX R
CPEBOCB0 & com.androtd.mm 10. |<leeping | 07AC | 19640 1365. app_process ton0a00D WA EX RD
CPFOSSED | androtd.process.media 10, |s]eeping | 07BD | 1981. 1382, dev/zero 08000000 R EX RD SH
C7F67C20 | com.android.calendar 5. [sleeping | o7cA | 1334 1395, dev/ashmen/systen_properties 40000000 EX RD SH
CPFDEB40 & com.android .alarnclock 7. |Sleeping | O7DE | 2014. 2015. dev/ashnen /nspace7dalvik-heap/zygote 40008000 WA EX RD
C384A320 & com.androd. inputnethod.latin | 7. |Slcening | 07EE | 2022. 2023. dev/ashien /space/dalvik-hean/zyante 40243000
C38AE000 - m g sleeping 07FE 2038 . DroidSans.ttf 41009000 EX RD
3878640 my.andr :2033 sleeping 2033 i sl 41045000 EX RD SH
C38R6950 Hy andr $2040 sleening 2040, AudiaProfect . 41047000 EX RD
C38AECE0 my.andr:2041 sleeping 2041, dav/ashmem/da'\vlk-LmEarM'In(41044000 7
T el o0 —— 7]

Process Display with VM Application Names

www.lauterbach.com

LEADING through Technology LA UTERBACH

Virtual Machines...

Processors have become more and more powerful. This has made it possible to abstract even the
hardware—Virtual Machines (VM), formerly a domain of big mainframes, arrived in the embedded world.

If you run code in a Virtual Machine (VM), instead of executing native machine code directly on a processor,
you run a piece of software that emulates another “virtual” machine.

Such a VM has several advantages: the code written for it can be executed on any (other) real processor for
which you have an implementation of the VM. Also you can change and tune the VM architecture for specific
needs (e.g. stack vs. register based machine, higher security, etc.). Then you can optimize the internal VM
operations and instruction code as needed. Last but not least you could actually consider building the VM as
a new-generation real machine in hardware.

You probably already use a VM on a daily basis: many cell phone providers chose to use JavaCard™ smart
cards as their SIM. They now can use smart card hardware with different processors and hardware, and
from different vendors, but still keep software updates manageable. Interpreted Java™ bytecode is also
inherently more secure than native machine code.

Of course VMs also have drawbacks. One of them is speed: the VM itself is a software program that has to
interpret a stream of data as VM instructions. This is slower than directly executing native machine code on
the processor core, and if the VM implementation is not "correct", you might even get security problems.

Luckily for us, people will always manage to introduce bugs, this is also true for VM code. So there is a need
for virtual machine (VM) debugging, which has its own advantages and problems.

...and VM Debugging

One option is adding debug support directly to the Virtual Machine (VM) itself. Then e.g. a special “Debug
Interpreter” can handle the debugging requests. Android is an example for such an implementation, and this
usually works well for pure Java™ application debugging. But what do you do if you can't use this, because
the bug does not show when the “VM Debug Interpreter” is active? Or if you have to debug interactions
between VM and Linux kernel?

In this case, you debug in “stop-mode”. To find out which program currently runs in the Virtual Machine and
which values its variables and objects have, you first need to read the memory content of the real machine.
Then the debugger must find, analyze and interpret the data structures of the VM itself and of the
application's object data to give a good “VM abstraction level” view of the system and its state.

One of the challenges for VM debugging is (like for operating system kernels) that any VM itself is "just a
piece of software" which can and will be adapted to the needs of the final product. Any major change of the
VM code and its data structures must be matched by the debug tools, or the interpreted information will be
useless.

Android is an excellent example of this: the application developer writes code in Java, but the Dalvik
bytecode generated from its class files could never run in a standard Java™ VM. Any standard Java™
debug tool will therefore not be able to display anything meaningful.

www.lauterbach.com 8/10

%

LEADING through Technology

For the processor itself, Dalvik VM “program code” is just data. Therefore a “program trace” that works well
for native code is not useful for VM tracing or profiling. For this task you need data trace capabilities (or
some very clever trickery).

Providing VM debug support without any help from the target is very difficult: at Lauterbach we are currently
researching unassisted and integrated Native/VM debugging. Part of the solution will be a “TRACE32 VM
Awareness Extension” that can be adapted by a customer to any changes in the VM. This will make generic
VM support possible.

A TRACE32 LEX]® Bizarea BE5)

Fle E@ View Var Brek Bw CPU Misc Trace Pef Cov Liwx Window iy &

k| d|ele| »|jn 2[%] &

loading pavik M cynbols.

Nane made option set

File /andrmd/taz/hhdvm Fo° (ELF/OMRF2) Toade
scanning balyik Tibrary

hreading:

e e e e o [% T e e o e JUL g o
ZSRAO000:CO1 87100 Swlinushs3ofh_fmads [swapper [stopped (nside i) T L (0P [il
» B::Data.List BB Y Bur E]@E]'A B=TERM [J[O)[x)
M Step | B Over | 4 Next | ¢ Retum| & Up 10 Break |] Mode | o [[7 ol | TEE o G fiweite il

shovsTat

Agdr/ime = e cc k2 0714 R10 500272E4 jActive / Tota] Objects (%

sTgned fnt . R coatAse Ril CO407EE4 lActive / Total Slabs (5 us
e T TR o | S s Rctive / Total caches. (s u
unsigned int f)_start_adiress, fh_end_address; G 0 Ri3 Cod07ERD lActive / Total Size (3 use
a8 $f (30 infolsdefh_find palette vin] paletteveady| ||| - - 5 L O HH g T s S
e sdcfh_write_palette(fsicth infolsdcfb_find.piof | |oZ Spsp Ag000013 CPSR 60000113 0BJS ACTIVE USE OEI SIZE
o 8325 8325 05K

Bl capmmn e M v o RN
g e £ _ A3 so027318 RO 0 3008 3798 9% 014K
] - arzee 1 0 Jgd 2484 100 DLddk
SRR e et - Ri0 S0027264 Rio 0 fa32 1839 98 0.09K
_ [2 Ril CodoveEq AI1 0 1538 1535 9% 0.02K
R s3cfb_infoli].fh.fix.line length = s\l) = R1> CO407EES Ri2 0 1472 1404 9% D.06K
2R3 40107E90 i 0 a4 897 a® 050K
Ri4 AFE121B8 R14 0 784 769 9% 0.55K
319 s3ofh_infoli].fb . £ix.snen_len = s3cf L4 B 2 B i
575 527 9% 06K
30 304 98 0.26K
= e gntol1]. v oes - e s [e e |
e SPSHAODDDOT3 SPSF ADDOO1S3 + 1< CD407FO8 384 373 9% 0.03K

325 S3cfTinfalilfh var res_virtual - e
i
Y B:TASK.Process [BEIE

[Eazic | comand WEhr [state — [spaceid pids [| State [~

D30T = svanper 20 [current | 0000 | 0. 2. 3. 4. [40 sTeeping 10012 B
7818001 = |sTeeping | 0001 | 1; =
791630 fsystendbinsh - |steeping | ave | de7. qid un size tth tty name path
7 Yaysten/binjservicenanager | - |slesping | 074C | 18g8. 0072 00008CI5 CIACAT - FeyS TR bGP proeess
7 Zsysten/bin/vald - |sleeping | @7p | 1863
7 /system/hm/aehuaqem - |sTeeping | o7 | 18700 [(1o Fomaicekec oontze
7 Systenfonn/ri . [leening | o74F | 1e71. 1879 ingect child_younser sibling_oer <ibling
7 2ya0 Sleeping | 0750 | 187 o arker
7 #Lostensin/mediaserver Sleeping | 0751 | 1873l test
7 “5ysten/bin/dbus-daenon = |sleepina |72 | 187
788 Yaysten/bin/ installd - |sTeeping | 0753 | 187
7 <hin/adb 2. [sleeping | 0755 | 1877. te78. ||| 2 code a data addr/size Stack start
7 Systen_server 33. [sleeping | Q76D | 101 15020 o L L
7 Con.android.phor 14 [STeeping | 0782 | 1s36. 19380 M| | code File tort address flags
7 0id .process.acore 9. [sleeping | 0794 | 1940 1941 app_process T0008000
7 con.android.mms 10. [sleeping | D7AC | 1964, 165. ap_process 00003000 £ w0
760 android .process.ned+ 100 [STeeping | 078D | 1981, 1s62. dev7zera 22000000 W EX RD SH
7 Con.android.calendar 15 [STeeping | D7CA | 19947 1895 dev/ashnen/syst en_prapert ies EX RD SH
7 con.andraid.alarncl 7. |sleeping | Q7DE | 2014. 2015. Fev/aoheen aspace a1k heap/2yaote 40008000 ¥R EX AD
3844320 [com.android. inputmethod.Tatin | 7. |<lecoing | O7ES | 2022 2023 eviechmen/ncpace/ v k-neen/zyaote 40243000
3845000 “andr 8. |sTeeping | 7F8 | 2038. Drojdsar 41003000 £X RD
3846640 ny .andr :2039 Sleeping 2039 dev/ashmem/MemnryHeaDBase 41045000 £X RD SH
38AE950 yandr :2040 Sleening 2040, AudioPro ject .apk 41047000 £X RD
38A6CE0 ny -andr :2041 Sleeping 2041 3| dev)aahuanydaty k-Linearalloc 41044000 v
T o = J—— =i

Sample Android Debug Session

www.lauterbach.com

LEADING through Technology LA UTERBACH

A TRACE32 D[_s:Register Mask track.address() [-)(5) (]

ile iew Var Break Run tisc Trace Perfl Cov Linux Window el . B4 [T CD434F68 °F C3BA32C0 [T
Flo Edt View Var Break Bun CPU Misc Trace Pof Cov Limux Wind ey || B o e
T F2 FFFFFEFF £10 C3BER000 o CIBEZCDA
M| ¥ ele] »nf i 2| @ R 1220 R11 C3BE7CB4 34 C3BE7CS0
] s e D e P g B 2R
T Fo C3BA3C20 10 C3BEFCTB o C38A3C20
B::[task.option namemode arg(l T Re CCE7A00 R14 COOGOBF4 -o6 7FFFFFFF
o fc C032053C -4 00000000
PSR 18 20
“ic

Z R7 38R
lsvc SPSk ADDDODT3

[| | | | | | | == | ke CoBE7DAD
A 2 us: FIQ: ~16 C7DAB726 |
ZSD:0000:C38AAC20 [swapper [Stopped [T WX JuP
3 [Bzrareal [BIEIE) 1Y B:TERM EER)
784 781 99% 055K 56 5.2 448K shmem_inode_cache &)
576 573 99% 0.12K 18 32 72K kma - 12!
550 544 98% 0.16K 22 25 88K fil) =1
546 545 s 0ok 13 b 52K
384 383 99% 0.03K 3 128 12K kia
384 8 s 0K 3 12 126
377 377 100% 0.29K 23 13 116K radix_t Lt
]
T 7]
A B::Var.Frame /Locals /Caller /Task track.address() [BIEE]

fiagic
783F900
7843300 [
784320
7848FA0
7848960

t.Up | "3 Dows| 7 Args [Locals |7 Caller | Task [Fmy.andr204s” &)

= DxC38A3200
nt = 0xC38A3D78

£ (intp_synced() || set_rte == WILL
Tdr r3,0%C0058A2C w

20000 1dr i

25R:0000:C0058344 |- 120040 st r3, Ao

25R:0000:C0058948 | 14000022 bre DxCons8aDe

2 || zsk:on00:conseaac] [£ssranne Tdr r3,0xCo058430 y

5] JET 71

92 i
2SR :0000:C005893C | [E55F20Ee

Android Debug Session with OS Awareness Menu

Boards

Our South Korean partner MDS Technology Co., LTD provided us with MEP-6410(M6R2) ARM11™
Reference Boards and with an Android operating system port.

At the heart of the MEP-6410(M6R2) is a powerful ARM1176JZF-S™ in a Samsung S3C6410 SoC. This
ARM11 Reference Board features a 3.5 inch 320x480 LCD with touch screen optimized for Android, 128MB
NAND FLASH and 128MB RAM, Ethernet interfaces, camera, USB, UART and plenty of other useful
hardware for development. Also it includes a connector for JTAG debugging.

If you are on a more constrained budget, | suggest you check out one of the available BeagleBoard Kits (e.g.
EBVbeagle). Here you get an ARM™ Cortex™ A8 plus DSP within a TI™ OMAP™3530. No Ethernet or LCD
are on the board itself, and depending on its revision you may have to do some Android adaptation work,
but it comes for very little money.

Conclusion and Outlook

Available today are the very first steps of Virtual Machine (VM) debug support. For Dalvik VM debugging on
Android, knowledge about Linux processes is essential, as each VM application runs in its own process. Our
Linux Awareness interprets memory structures to give you an idea what the Linux kernel was doing at the
moment the system was halted, and it can now extract and display Dalvik VM application names.

Research and development are in progress to bring “VM awareness" to Lauterbach's TRACES32 range of
debugging tools. Android on ARM™ will be the first platform with VM awareness, and in a few months you
can expect a ramp-up of Native/VM debug capabilities.

Published: 1Q Magazine Volume 9, Number 1, 2010

www.lauterbach.com

