

 page 1 of 6

Figure 1: A hypervisor coordinates the operation of several
virtual machines on a real machine. In doing so, it ensures a
strict separation of the virtual machines.

Debugging in virtual worlds:

“Checking out"
the hypervisor“

In order to save money, the functions from
several electronic devices are consolidated on a
common hardware unit. A hypervisor separates
the functions on the software side. This results in
debugging becoming more challenging but by no
means impossible.

ypervisor – embedded software developers
are currently faced with this term all the
time. There is almost a hype around this
technology (pun intended). For instance, it

seems to be a focal point of discussion at the
moment in the automotive, aviation and
aerospace segments as well as in the field of
medical technology. However, what impact does
this have on the development cycle and, in
particular, in terms of debugging? Debugging
tools, particularly those that access the hardware
(e.g. JTAG debuggers) need to take so much into
consideration when a hypervisor is utilised on the
target system. Naturally, the developer wants to
have a tool at their disposal that shows them the
complete status of the embedded system
including all components such as the hypervisor,
guest operating systems and guest processes.

Several machines on a single piece of
hardware

According to Wikipedia, "Hypervisors permit the
simultaneous operation of several guest systems
on a single host system". They are used to run
various tasks on a single piece of hardware in
parallel. In doing so, the tasks are so varied that
different operating systems are used in order to
implement them. The hypervisor is responsible for
allowing these various operating systems to run
on a single computer, either by dividing the CPU
across the operating systems in a time slice
technique or by dynamically assigning the
individual cores to different guests in a multicore
environment. Everybody is aware of such
hypervisors on desktop computers such as
VMWare or VirtualBox. For instance, they allow
one (or several) complete Linux distribution(s) to

run on Windows. Other examples that are also
utilised in embedded systems include Xen, KVM,
Jailhouse and QEMU.

A concrete application from the embedded
systems segment may be structured as follows:
The objective is for a car dashboard to work with
an industrial Linux distribution, for the
infotainment system to operate using Android, for
the air conditioning to utilise FreeRTOS and the
engine control to work with an AUTOSAR Stack.
In the past, four (and more) different hardware
platforms were actually required for this purpose.
However, all of these functions are now
integrated into a single system and, where
possible, even on a single CPU.

Why? The first reason can be attributed to
costs. Nowadays, embedded systems are so
powerful that a single system is able to complete
all of these tasks. Furthermore, it is also cheaper
to produce and install an integrated hardware
module rather than four different systems. This is
the primary motivation as every penny counts,
especially in the automotive industry. As an "add-
on", a hypervisor provides an extra layer of
security and protection. The hypervisor is able to
monitor all guests and act accordingly in the
event of issues, e.g. by restarting a guest. It is
also essential to protect the guests from
unwanted interaction. A technical prerequisite for
this is to ensure that all guests are kept separate
from each other in terms of hardware via an
independent MMU (Figure 1). We will encounter
this feature once again, especially when it comes
to debugging.

H

 page 2 of 6

Figure 2: The hypervisor ensures a complete virtualisation of
the existing software.

Hypervisor functionality

In terms of hardware, the individual guests can be
separated from each other if the CPU provides a
complete hardware abstraction. In order to do so,
three things must be virtualised in principle: The
memory, the peripheral equipment and the CPU
itself (Figure 2). The guest's operating system
should not even know that it is running in a
virtualised machine. This means that the
operating system manages its own MMU ("Stage
1 MMU") and its own "physical" memory ("guest
physical = "intermediate"). However, this is not
actually physical. In fact, it is then compiled in a
real physical address space in a second MMU
("Stage 2 MMU") of the hypervisor. The
peripheral equipment is also virtualised ("virtual
I/O") in order to ensure that each guest is able to
interact with the environment. In doing so, the
hypervisor decides which guest may access
which piece of peripheral equipment and which
responds to guest interruptions. Finally, each
guest receives one or several virtual CPUs that
are mapped on the actual cores via a scheduler.
In doing so, the number of virtual CPUs of a
specific guest can be lower or greater than the
number of real cores.
Using the example of the aforementioned
automobile system, a chain of events would take
place as below:

→ A temperature sensor detects a drop below

3°C and triggers a hardware interrupt. This
interrupt is received and processed by the
hypervisor. The hypervisor forwards the
interrupt to the guest as a virtual interrupt
for the dashboard.

→ The guest system receives the virtual

interrupt (or guest driver) and sends a
signal to the process within the guest that is
responsible for the warning system and
displays "Danger: Ice".

Communication between the guests represents a
further example: The driver has recognised that it
is cold outside and presses the "heating on"
button on the dashboard. Thereupon, the guest
responsible for the dashboard sends a signal via
the hypervisor to the guest responsible for the air
conditioning that it should turn the heating on.

Hypervisor impact on debuggers

So far so good but what happens if the system
doesn't respond as expected during the
development phase? If the warning signal
process is not triggered at all for instance or if the
air conditioning has no idea of what the driver
wants? The software must be examined using a
debugger in order to find the fault.
In principle, there are two debugging methods:
The software-controlled run mode debugging and
the hardware-controlled stop mode debugging.
The run mode debugging method involves the
loading of an additional debug software in the
system (e.g. "gdbserver" for Linux processes) that
accomplishes the actual debugging. Single-step
mode, breakpoints, etc. are all managed by this
piece of software (also called the "debug agent").
For this purpose, a debugger on the development
computer communicates with the agent, e.g. via a
serial interface or Ethernet. In order to ensure that
this works, only the components to be debugged
are stopped, e.g. a Linux process. The rest of the
system will continue to run (this is the reason why
it is called "run mode"). The system must
continue to run in order to ensure that the
communication can be further maintained with the
debugger.
Such a debug session only requires an
appropriate communication channel. If an
underlying hypervisor is present, the channel is
simply routed through it (Figure 3). Once this
route has been established, neither the debugger
nor the agent is aware that a hypervisor is
present in-between them, i.e. the debugging is
"hypervisor agnostic". This method is perfect if
the system needs to continue during the
debugging, e.g. because protocols need to be
served. This is completely sufficient for the
debugging of functions within a process or when it

 page 3 of 6

Figure 3: "Run mode" debugging with a gdbserver.

comes to processes within a single machine.
However, this method reaches its limits as soon
as drivers (Linux modules) are involved. This is
particularly the case when the user leaves the VM
and other guests or the hypervisor are affected.
Therefore, a different debugging method is
required if an error is pending for the warning
signal outside of the process in the
aforementioned chain of events.

Stop mode debugging: Stop everything

When it comes to hardware-controlled debugging,
the debugger is connected directly to the CPU via
special pins (Figure 4). The debugger uses these
pins, typically JTAG, to control the CPU itself, e.g.
stop it, trigger individual program steps, read the
registry or memory. However, this also means
that the entire system, including all processes,
guests and – of course – the hypervisor, is
stopped in the event of a breakpoint. In such a
case, no more interrupts are operated, no
communication protocols run and no VM, process
or task changes take place. The CPU is
effectively "frozen", which is why it is called "stop
mode".
When in this state, the CPU only "sees" the
components that are currently released by the
MMU, i.e. only one guest (the one currently
running on the CPU) and only one process (the
one where the guest is currently active). All
registries and memory accesses relate to this
context. The CPU does not have any access to
other VMs or processes. A hardware debugger
also accesses the system via the CPU and is
therefore initially subjected to the same
restrictions: It can only "see" the current situation.
However, it is able to do slightly more than that:
Thanks to a temporary minimal manipulation to
the MMU registry, it can also directly read the
physical address space and the current
"intermediate" (= "physical guest") address space.
However, all debug symbols belonging to the
processes and guests are stored on virtual
addresses, meaning that this additional view is

not particularly useful to begin with. However,
developers want to see everything: The
hypervisor, all guests as well as all guest
processes all at once and all at the same time!
However, this is, in principle, not possible in run
mode for the aforementioned reasons. But it is
possible in stop mode. , which is the main
strength of this option.
For the debugger to be able to see everything
beyond the current status, it needs to know about
the system, i.e. demonstrate "awareness". It
requires a "hypervisor awareness", an "OS
awareness" for each guest and an "MMU
awareness" for both the hypervisor as well as for
each guest, which can vary considerably. As the
debugger is now aware of the system layout, it
can read the list of guests and processes as well
as their MMU tables from the system. Equipped
with this knowledge, the debugger performs the
MMU table walk (translation of the virtual into
physical addresses) for each virtual address of a
guest or process itself, i.e. past the hardware
MMU, and reads the respective data from the
physical memory directly. By implementing this
method, the debugger accesses all addresses
belonging to all guests and all processes,
irrespective of whether they are virtual,
intermediate or physical. And all of this is done at
the same time!

Figure 4: JTAG debugger with the target system: This is
how a hardware debugger is connected to the target
system.

 page 4 of 6

Figure 5: The debugger "knows" the hypervisor and the guest machines.

Debugger needs to have "awareness"

Consequently, the debugger accesses a target
system that consists of a hypervisor and several
guest operating systems. Each machine has its
own set of registries, MMU translations,
processes, symbols, breakpoints, etc. The
debugger must be able to work with each of these
machines. This applies to both the "real" machine
(i.e. the hypervisor) as well as all virtualised guest
systems as if they were real machines. Of course,
they need to work with all machines at the same
time.
The aforementioned "awareness" is used for this
purpose. A hypervisor awareness must be
dedicatedly adapted to each hypervisor and
determine the list of the virtual machines, their
IDs, virtual CPUs and the MMU settings for this.
The awareness uses the hypervisor debug
symbol information (ELF/DWARF) in order to
read the necessary information from the system.
The illustration of the virtual machines and their
resources provides an excellent system overview
(Figure 5). The hypervisor awareness is also
responsible for managing the layout of the stage
2 MMU translation so that the debugger has
access to all VMs.

An "OS awareness" is required in order to
analyse the content of a guest operating system
and each guest requires its own. The awareness
is also developed specifically for each OS in use
here. This awareness then determines the
processes of the operating system and the MMU
settings within the VM as well as the MMU table
layout (stage 1 translation). For this purpose, the
awareness then uses the debug symbol
information belonging to the respective operating
system. When using Linux, this is the "vmlinux"
file for instance. As a result, processes, threads
and other resources can be illustrated.

Using these awarenesses, the debugger is
ultimately aware of the machines, operating
systems and processes running on the target
system. Consequently, the TRACE32 debugger
developed by Lauterbach is able to illustrate a
hierarchical tree of the entire system. Various
commands and windows can be specially used
on a certain machine or certain process. For
instance, the process taking place on a Linux
machine and the task being performed by a
FreeRTOS device can be shown at the same time
(Figure 6). The TRACE32 symbol management
has been changed accordingly so that the
developer is able to assign the loaded symbols to
a certain machine or a certain process. It was
also expanded with a machine ID and a process
ID in order to ensure that the developer is also
able to access every virtual address at all times.
Therefore, each virtual address is unambiguous.
If the software runs on a breakpoint, the entire
system will be stopped as described above. The
debugger then automatically switches to the (real)
core and displays the machine and process on
which hit the breakpoint. This allows the user to
immediately see the conditions that led to this
break. The current VM is called the "current
machine". Naturally, it is possible to manually
switch to other cores and their "current
machines".

 page 5 of 6

Access to inactive guest systems

With this concept, the user is not only able to
switch the view to other hardware cores; they can
also switch to other, currently inactive guest
systems. As a result, a symbolic access to all of
the functions and variable of other machines is
possible at all times. The symbols were loaded for
a specific machine. The debugger translates the
virtual address of the symbols into a physical
address (it performs the MMU table walk itself)
and, for instance, then reads the variable value
from the physical RAM. In doing so, it is important
that the CPU state is not changed at any time and
that everything is performed within the debugger.
By accessing the symbols belonging to all of the
machines, it is also possible to set breakpoints to
any function on any machine at all times. Of
course, the debugger can also be switched to the
registry set of a certain machine or process. If the
registries are not loaded in a real core at this
moment in time, the debugger reads the values
for this from the hypervisor or guest system
memory. Using these values, the debugger
determines the current stack frame in
order to; for instance, display the current
call hierarchy of a task's functions.
Straightaway, the developer sees the
current progress of the task and why it
may be potentially waiting.

How can these functions now be used in
order to debug for the application
mentioned at the start? As a reminder:
The guest process did not receive a
hardware interrupt. In fact, it is now
easy to analyse this problem. Using the
hardware debugger, a breakpoint is
applied directly to the interrupt vector.
The system will stop as soon as the
interrupt is triggered. As the debugger is
aware of all components, the developer
is now able to follow the chain of events,
i.e. the progress from the point of
interrupt by the hypervisor, via the guest
operating system and to the individual
process, either in single step mode or
through breakpoints in the respective
steps. As a result, any fault that may
have crept in is easy to find. However,
deadlocks are more difficult to find if two
communication processes mutually

block each other for instance. In such a case, the
system view helps as the states of all participating
components can be illustrated next to each other.
Consequently, it is easy to see which task of
which guest – or even the hypervisor – is in an
forbidden state or is potentially waiting for mutual
resources. The post-mortem analysis option
should not be underestimated, if the entire system
gets into a state and no longer responds. Due to
the fact that a hardware debugger does not
require any active software on the target system,
it is now able to investigate the state of every
component. As TRACE32 from Lauterbach also
contains an instruction set simulator, the
developer can obtain complete memory dump
from such a system and comfortably analyse it at
a later date without true target hardware, in a
similar way to a core dump analysis. However,
this time across the entire system, including the
hypervisor, all guests and all processes.

Figure 6: A tree structure illustrates the target system layout.

 page 6 of 6

Figure 7: Call hierarchy of an inactive task within the inactive guest.

Lower costs, more complexity

Hypervisors are also increasingly being used in
the embedded world. Advantages such as cost
savings and runtime monitoring are clear
arguments in its favour. However, this comes at
the cost of higher system complexity. The hardware
must provide virtualisation via a two-step MMU
hierarchy that has to be managed by the
hypervisor. A hardware-supported debugger (e.g.
via JTAG) requires hypervisor and guest system
knowledge in order to provide the developer with
an insight into the software. For this purpose an
"awareness" adapted to the respective hypervisor
and the respective guest operating system is
loaded on the debugger that reads the necessary
information from the target system.

.

Lauterbach has created a reference
implementation with the Xen hypervisor and the
Linux and FreeRTOS guests on a Hikey board
that demonstrates the functionality. The MMU
support implemented in the TRACE32 debugger
and an expansion of the address management to
virtualised systems permit access to all
components at all times. This enables a
debugging of the hypervisor, all guest operating
systems and all guest processes. Consequently,
it is even possible for a retrospective analysis of a
memory map without any problems whatsoever.
Overall, the developer receives a tool that they
can use to even effortlessly debug such complex
systems.

Lauterbach GmbH
Rudolf Dienstbeck

rudolf.dienstbeck@lauterbach.com

Published in Elektronik Magazine # 20
Oct 4th, 2017

mailto:rudolf.dienstbeck@lauterbach.com

