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Figure 1: A hypervisor coordinates the operation of several 
virtual machines on a real machine. In doing so, it ensures a 
strict separation of the virtual machines. 

 
Debugging in virtual worlds: 

“Checking out"  
the hypervisor“ 

 
In order to save money, the functions from 
several electronic devices are consolidated on a 
common hardware unit. A hypervisor separates 
the functions on the software side. This results in 
debugging becoming more challenging but by no 
means impossible. 

 
ypervisor – embedded software developers 
are currently faced with this term all the 
time. There is almost a hype around this 
technology (pun intended). For instance, it 

seems to be a focal point of discussion at the 
moment in the automotive, aviation and 
aerospace segments as well as in the field of 
medical technology. However, what impact does 
this have on the development cycle and, in 
particular, in terms of debugging? Debugging 
tools, particularly those that access the hardware 
(e.g. JTAG debuggers) need to take so much into 
consideration when a hypervisor is utilised on the 
target system. Naturally, the developer wants to 
have a tool at their disposal that shows them the 
complete status of the embedded system 
including all components such as the hypervisor, 
guest operating systems and guest processes. 

Several machines on a single piece of 
hardware 

According to Wikipedia, "Hypervisors permit the 
simultaneous operation of several guest systems 
on a single host system". They are used to run 
various tasks on a single piece of hardware in 
parallel. In doing so, the tasks are so varied that 
different operating systems are used in order to 
implement them. The hypervisor is responsible for 
allowing these various operating systems to run 
on a single computer, either by dividing the CPU 
across the operating systems in a time slice 
technique or by dynamically assigning the 
individual cores to different guests in a multicore 
environment. Everybody is aware of such 
hypervisors on desktop computers such as 
VMWare or VirtualBox. For instance, they allow 
one (or several) complete Linux distribution(s) to 

run on Windows. Other examples that are also 
utilised in embedded systems include Xen, KVM, 
Jailhouse and QEMU. 

A concrete application from the embedded 
systems segment may be structured as follows: 
The objective is for a car dashboard to work with 
an industrial Linux distribution, for the 
infotainment system to operate using Android, for 
the air conditioning to utilise FreeRTOS and the 
engine control to work with an AUTOSAR Stack. 
In the past, four (and more) different hardware 
platforms were actually required for this purpose. 
However, all of these functions are now 
integrated into a single system and, where 
possible, even on a single CPU. 

Why? The first reason can be attributed to 
costs. Nowadays, embedded systems are so 
powerful that a single system is able to complete 
all of these tasks. Furthermore, it is also cheaper 
to produce and install an integrated hardware 
module rather than four different systems. This is 
the primary motivation as every penny counts, 
especially in the automotive industry. As an "add-
on", a hypervisor provides an extra layer of 
security and protection. The hypervisor is able to 
monitor all guests and act accordingly in the 
event of issues, e.g. by restarting a guest. It is 
also essential to protect the guests from 
unwanted interaction. A technical prerequisite for 
this is to ensure that all guests are kept separate 
from each other in terms of hardware via an 
independent MMU (Figure 1). We will encounter 
this feature once again, especially when it comes 
to debugging. 
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Figure 2: The hypervisor ensures a complete virtualisation of 
the existing software. 

Hypervisor functionality 

In terms of hardware, the individual guests can be 
separated from each other if the CPU provides a 
complete hardware abstraction. In order to do so, 
three things must be virtualised in principle: The 
memory, the peripheral equipment and the CPU 
itself (Figure 2). The guest's operating system 
should not even know that it is running in a 
virtualised machine. This means that the 
operating system manages its own MMU ("Stage 
1 MMU") and its own "physical" memory ("guest 
physical = "intermediate"). However, this is not 
actually physical. In fact, it is then compiled in a 
real physical address space in a second MMU 
("Stage 2 MMU") of the hypervisor. The 
peripheral equipment is also virtualised ("virtual 
I/O") in order to ensure that each guest is able to 
interact with the environment. In doing so, the 
hypervisor decides which guest may access 
which piece of peripheral equipment and which 
responds to guest interruptions. Finally, each 
guest receives one or several virtual CPUs that 
are mapped on the actual cores via a scheduler. 
In doing so, the number of virtual CPUs of a 
specific guest can be lower or greater than the 
number of real cores. 
Using the example of the aforementioned 
automobile system, a chain of events would take 
place as below: 
 
→ A temperature sensor detects a drop below 

3°C and triggers a hardware interrupt. This 
interrupt is received and processed by the 
hypervisor. The hypervisor forwards the 
interrupt to the guest as a virtual interrupt 
for the dashboard. 

 
→ The guest system receives the virtual 

interrupt (or guest driver) and sends a 
signal to the process within the guest that is 
responsible for the warning system and 
displays "Danger: Ice". 

 
Communication between the guests represents a 
further example: The driver has recognised that it 
is cold outside and presses the "heating on" 
button on the dashboard. Thereupon, the guest 
responsible for the dashboard sends a signal via 
the hypervisor to the guest responsible for the air 
conditioning that it should turn the heating on. 
 
 

Hypervisor impact on debuggers 

So far so good but what happens if the system 
doesn't respond as expected during the 
development phase? If the warning signal 
process is not triggered at all for instance or if the 
air conditioning has no idea of what the driver 
wants? The software must be examined using a 
debugger in order to find the fault. 
In principle, there are two debugging methods: 
The software-controlled run mode debugging and 
the hardware-controlled stop mode debugging. 
The run mode debugging method involves the 
loading of an additional debug software in the 
system (e.g. "gdbserver" for Linux processes) that 
accomplishes the actual debugging. Single-step 
mode, breakpoints, etc. are all managed by this 
piece of software (also called the "debug agent"). 
For this purpose, a debugger on the development 
computer communicates with the agent, e.g. via a 
serial interface or Ethernet. In order to ensure that 
this works, only the components to be debugged 
are stopped, e.g. a Linux process. The rest of the 
system will continue to run (this is the reason why 
it is called "run mode"). The system must 
continue to run in order to ensure that the 
communication can be further maintained with the 
debugger. 
Such a debug session only requires an 
appropriate communication channel. If an 
underlying hypervisor is present, the channel is 
simply routed through it (Figure 3). Once this 
route has been established, neither the debugger 
nor the agent is aware that a hypervisor is 
present in-between them, i.e. the debugging is 
"hypervisor agnostic". This method is perfect if 
the system needs to continue during the 
debugging, e.g. because protocols need to be 
served. This is completely sufficient for the 
debugging of functions within a process or when it 
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Figure 3: "Run mode" debugging with a gdbserver. 
 

comes to processes within a single machine. 
However, this method reaches its limits as soon 
as drivers (Linux modules) are involved. This is 
particularly the case when the user leaves the VM 
and other guests or the hypervisor are affected. 
Therefore, a different debugging method is 
required if an error is pending for the warning 
signal outside of the process in the 
aforementioned chain of events. 
 

Stop mode debugging: Stop everything 

When it comes to hardware-controlled debugging, 
the debugger is connected directly to the CPU via 
special pins (Figure 4). The debugger uses these 
pins, typically JTAG, to control the CPU itself, e.g. 
stop it, trigger individual program steps, read the 
registry or memory. However, this also means 
that the entire system, including all processes, 
guests and – of course – the hypervisor, is 
stopped in the event of a breakpoint. In such a 
case, no more interrupts are operated, no 
communication protocols run and no VM, process 
or task changes take place. The CPU is 
effectively "frozen", which is why it is called "stop 
mode". 
When in this state, the CPU only "sees" the 
components that are currently released by the 
MMU, i.e. only one guest (the one currently 
running on the CPU) and only one process (the 
one where the guest is currently active). All 
registries and memory accesses relate to this 
context. The CPU does not have any access to 
other VMs or processes. A hardware debugger 
also accesses the system via the CPU and is 
therefore initially subjected to the same 
restrictions: It can only "see" the current situation. 
However, it is able to do slightly more than that: 
Thanks to a temporary minimal manipulation to 
the MMU registry, it can also directly read the 
physical address space and the current 
"intermediate" (= "physical guest") address space. 
However, all debug symbols belonging to the 
processes and guests are stored on virtual 
addresses, meaning that this additional view is 

not particularly useful to begin with. However, 
developers want to see everything: The 
hypervisor, all guests as well as all guest 
processes all at once and all at the same time! 
However, this is, in principle, not possible in run 
mode for the aforementioned reasons. But it is 
possible in stop mode. , which is the main 
strength of this option. 
For the debugger to be able to see everything 
beyond the current status, it needs to know about 
the system, i.e. demonstrate "awareness". It 
requires a "hypervisor awareness", an "OS 
awareness" for each guest and an "MMU 
awareness" for both the hypervisor as well as for 
each guest, which can vary considerably. As the 
debugger is now aware of the system layout, it 
can read the list of guests and processes as well 
as their MMU tables from the system. Equipped 
with this knowledge, the debugger performs the 
MMU table walk (translation of the virtual into 
physical addresses) for each virtual address of a 
guest or process itself, i.e. past the hardware 
MMU, and reads the respective data from the 
physical memory directly. By implementing this 
method, the debugger accesses all addresses 
belonging to all guests and all processes, 
irrespective of whether they are virtual, 
intermediate or physical. And all of this is done at 
the same time! 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: JTAG debugger with the target system: This is 
how a hardware debugger is connected to the target 
system. 
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Figure 5: The debugger "knows" the hypervisor and the guest machines. 

Debugger needs to have "awareness" 

Consequently, the debugger accesses a target 
system that consists of a hypervisor and several 
guest operating systems. Each machine has its 
own set of registries, MMU translations, 
processes, symbols, breakpoints, etc. The 
debugger must be able to work with each of these 
machines. This applies to both the "real" machine 
(i.e. the hypervisor) as well as all virtualised guest 
systems as if they were real machines. Of course, 
they need to work with all machines at the same 
time. 
The aforementioned "awareness" is used for this 
purpose. A hypervisor awareness must be 
dedicatedly adapted to each hypervisor and 
determine the list of the virtual machines, their 
IDs, virtual CPUs and the MMU settings for this. 
The awareness uses the hypervisor debug 
symbol information (ELF/DWARF) in order to 
read the necessary information from the system. 
The illustration of the virtual machines and their 
resources provides an excellent system overview 
(Figure 5). The hypervisor awareness is also 
responsible for managing the layout of the stage 
2 MMU translation so that the debugger has 
access to all VMs. 

 
An "OS awareness" is required in order to 
analyse the content of a guest operating system 
and each guest requires its own. The awareness 
is also developed specifically for each OS in use 
here. This awareness then determines the 
processes of the operating system and the MMU 
settings within the VM as well as the MMU table 
layout (stage 1 translation). For this purpose, the 
awareness then uses the debug symbol 
information belonging to the respective operating 
system. When using Linux, this is the "vmlinux" 
file for instance. As a result, processes, threads 
and other resources can be illustrated. 

 
 
Using these awarenesses, the debugger is 
ultimately aware of the machines, operating 
systems and processes running on the target 
system. Consequently, the TRACE32 debugger 
developed by Lauterbach is able to illustrate a 
hierarchical tree of the entire system. Various 
commands and windows can be specially used 
on a certain machine or certain process. For 
instance, the process taking place on a Linux 
machine and the task being performed by a 
FreeRTOS device can be shown at the same time 
(Figure 6). The TRACE32 symbol management 
has been changed accordingly so that the 
developer is able to assign the loaded symbols to 
a certain machine or a certain process. It was 
also expanded with a machine ID and a process 
ID in order to ensure that the developer is also 
able to access every virtual address at all times. 
Therefore, each virtual address is unambiguous. 
If the software runs on a breakpoint, the entire 
system will be stopped as described above. The 
debugger then automatically switches to the (real) 
core and displays the machine and process on 
which hit the breakpoint. This allows the user to 
immediately see the conditions that led to this 
break. The current VM is called the "current 
machine". Naturally, it is possible to manually 
switch to other cores and their "current 
machines". 
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Access to inactive guest systems 

With this concept, the user is not only able to 
switch the view to other hardware cores; they can 
also switch to other, currently inactive guest 
systems. As a result, a symbolic access to all of 
the functions and variable of other machines is 
possible at all times. The symbols were loaded for 
a specific machine. The debugger translates the 
virtual address of the symbols into a physical 
address (it performs the MMU table walk itself) 
and, for instance, then reads the variable value 
from the physical RAM. In doing so, it is important 
that the CPU state is not changed at any time and 
that everything is performed within the debugger. 
By accessing the symbols belonging to all of the 
machines, it is also possible to set breakpoints to 
any function on any machine at all times. Of 
course, the debugger can also be switched to the 
registry set of a certain machine or process. If the 
registries are not loaded in a real core at this 
moment in time, the debugger reads the values 
for this from the hypervisor or guest system 
memory. Using these values, the debugger 
determines the current stack frame in 
order to; for instance, display the current 
call hierarchy of a task's functions. 
Straightaway, the developer sees the 
current progress of the task and why it 
may be potentially waiting. 

 
How can these functions now be used in 
order to debug for the application 
mentioned at the start? As a reminder: 
The guest process did not receive a 
hardware interrupt. In fact, it is now 
easy to analyse this problem. Using the 
hardware debugger, a breakpoint is 
applied directly to the interrupt vector. 
The system will stop as soon as the 
interrupt is triggered. As the debugger is 
aware of all components, the developer 
is now able to follow the chain of events, 
i.e. the progress from the point of 
interrupt by the hypervisor, via the guest 
operating system and to the individual 
process, either in single step mode or 
through breakpoints in the respective 
steps. As a result, any fault that may 
have crept in is easy to find. However, 
deadlocks are more difficult to find if two 
communication processes mutually 

block each other for instance. In such a case, the 
system view helps as the states of all participating 
components can be illustrated next to each other. 
Consequently, it is easy to see which task of 
which guest – or even the hypervisor – is in an 
forbidden state or is potentially waiting for mutual 
resources. The post-mortem analysis option 
should not be underestimated, if the entire system 
gets into a state and no longer responds. Due to 
the fact that a hardware debugger does not 
require any active software on the target system, 
it is now able to investigate the state of every 
component. As TRACE32 from Lauterbach also 
contains an instruction set simulator, the 
developer can obtain complete memory dump 
from such a system and comfortably analyse it at 
a later date without true target hardware, in a 
similar way to a core dump analysis. However, 
this time across the entire system, including the 
hypervisor, all guests and all processes. 
 

 

 

Figure 6: A tree structure illustrates the target system layout. 
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Figure 7: Call hierarchy of an inactive task within the inactive guest. 
 

Lower costs, more complexity 

Hypervisors are also increasingly being used in 
the embedded world. Advantages such as cost 
savings and runtime monitoring are clear 
arguments in its favour. However, this comes at 
the cost of higher system complexity. The hardware 
must provide virtualisation via a two-step MMU 
hierarchy that has to be managed by the 
hypervisor. A hardware-supported debugger (e.g. 
via JTAG) requires hypervisor and guest system 
knowledge in order to provide the developer with 
an insight into the software. For this purpose an 
"awareness" adapted to the respective hypervisor 
and the respective guest operating system is 
loaded on the debugger that reads the necessary 
information from the target system. 

 
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Lauterbach has created a reference 
implementation with the Xen hypervisor and the 
Linux and FreeRTOS guests on a Hikey board 
that demonstrates the functionality. The MMU 
support implemented in the TRACE32 debugger 
and an expansion of the address management to 
virtualised systems permit access to all 
components at all times. This enables a 
debugging of the hypervisor, all guest operating 
systems and all guest processes. Consequently, 
it is even possible for a retrospective analysis of a 
memory map without any problems whatsoever. 
Overall, the developer receives a tool that they 
can use to even effortlessly debug such complex 
systems. 
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