
DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

www.lauterbach.com 1

Germany Lauterbach GmbH
France Lauterbach S.A.R.L.
Great Britain Lauterbach Ltd.
Italy Lauterbach Srl
USA Lauterbach Inc.
China Suzhou Lauterbach Technologies Co. Ltd.
Japan Lauterbach Japan Ltd.

Debugging with ARM CoreSight

ARM CoreSight is a good example of the debug
and trace concepts for heterogeneous multicore
processors.

To process the many tasks within an embedded sys-
tem, processors that contain different core types are
increasingly used. To be able to properly debug such
a system, two conditions must be met:

1. The multicore processor must have suitable on-
chip debug and trace logic.

2. The development environment must support de-
bugging of the individual cores and also the overall
system with intelligent test and analysis functions.

This article describes how the TRACE32 development
environment meets these requirements in conjunction
with the CoreSight on-chip debug and trace technol-
ogy.

What Is CoreSight?

CoreSight is the name of the on-chip debug and trace
technology provided specially by ARM for multicore
processors. However, CoreSight is not designed as
a fixed logic block but rather, like a construction kit it
provides many different components. In this way, the
designer of the multicore processor can define the
scope of the functions provided for debugging and
tracing. CoreSight offers great freedom of configura-
tion. Integrating suitable debug and trace options on
the processor often requires the specialist knowledge
of the tool manufacturer. Our experts have been ad-
vising developers worldwide on this subject for many
years during the design phases of the latest genera-
tions of processors.

The construction kit concept of CoreSight naturally
has an effect on the development tool used. If the tool
knows the processor and its CoreSight component
configuration, debugging is very simple. For new pro-
cessors the construction kit concept requires the tool
to have a high degree of flexibility. Although CoreSight
configuration information can be read from the pro-
cessor, it is still often necessary to clarify details of the
implementation with the processor’s designer.

A heterogeneous multicore processor consisting of
the RISC cores ARM11 and Cortex-A as well as a
Ceva-X DSP was chosen for the following examples.

CoreSight Debug

For processors with CoreSight, all cores are de-
bugged over a joint JTAG interface. A development
environment for our specimen processor consists of
the following TRACE32 products (see Figure 1):

• A universal PowerDebug module connected to the
host over a USB or an Ethernet interface

• A debug cable with licenses for the ARM11, Cortex-
A, and Ceva-X architectures

In heterogeneous multicore processors, the individual
cores usually work on their tasks relatively indepen-
dently of each other. It therefore makes sense to start
a separate TRACE32 instance to debug each core
(see Figure 2 on the next page).

Fig. 1: A TRACE32 development environment for CoreSight Debug

www.lauterbach.com 2

However, to test that the cores are working properly
together, it must be possible to run debugging across
the cores. For this purpose, CoreSight provides a
cross-trigger system that enables synchronous de-
bugging of all cores: If a core stops at a breakpoint,
the other cores are also stopped synchronously. This
means the user can easily visualize the context of the
individual cores at any selected place in the program.

In addition to this basic function for multicore debug-
ging, TRACE32 can provide other useful debug func-
tions depending on the CoreSight configuration. See
the box on the right for a summary of all TRACE32
features for CoreSight Debug.

CoreSight Trace

A common interface is also provided for the trace in-
formation from all cores. Under CoreSight, a compo-
nent for generating trace information can be assigned
to each core. For our specimen processor, these are
the following components:

• ARM ETM for the ARM11 and the Cortex-A

• Ceva-X ETM for the Ceva-X (see also Figure 3)

Every trace component generates information about
the instructions its core has executed and the data
accesses that have been made. To provide this trace
information at the joint interface, the Funnel combines
the trace data into a single data stream. This is then

output at a trace port or stored in an on-chip trace
memory.

Off-Chip Trace Port

Using 18 processor pins (16 pins for the actual trace
information and two for control signals), the trace data
of all cores can be output to an external trace tool. For

Fig. 2: A separate TRACE32 instance is started to debug each core

• Flexible support for multicore processors with
CoreSight; Lauterbach offers debuggers for all
ARM/Cortex cores as well as a wide range of
DSPs

•	Debugging over the JTAG interface and the
Serial Wire Debug Port

•	Runtime access to the physical memory and
the peripherals register

• Synchronous debugging of all cores and the
peripherals

• The power-down mode of a core has no effect
on the debugging of the other cores

TRACE32-Features
for CoreSight-Debug

Fig. 3: Every core generates its own trace information

www.lauterbach.com 3

off-chip recording and analysis by TRACE32, the fol-
lowing products must be added to the development
environment in Figure 1 (see Figure 4):

• A universal “PowerTrace II” module that provides
up to 4 GBytes of trace memory

• An “Preprocessor AutoFocus II” for accessing the
trace data at the trace port. In this case, the Prepro-
cessor AutoFocus II must contain trace licenses for
the ARM ETM and the Ceva-X ETM.

On-Chip Trace Memory ETB

A pin-saving alternative to the trace port is the on-
chip trace memory known as the CoreSight Embed-
ded Trace Buffer (ETB). However, its capacity is much
smaller than an external trace tool – normally only 2
to 8 KB.

If the trace data is saved in the ETB and then read
over the JTAG interface, the debug cable in Figure 1

must also contain trace licenses for the ARM ETB and
the Ceva-X ETB.

Trace Analysis

After recording, the developer can display and ana-
lyze the trace data for each individual core. For this
purpose, each TRACE32 instance reads its trace data
from the common trace memory.

To analyze the interaction of the cores, their trace dis-
plays can be configured to show the trace entries of
all cores in a direct time relationship. For example, if
a trace entry is selected in the ARM11 instance, the
other two TRACE32 instances mark the instruction
that was executed by their core at that moment.

Similar to the debug options, the trace options avail-
able in TRACE32 depend on the current CoreSight
configuration. The trace options ease systematic
trouble shooting and allow an overall analysis of sys-
tem performance. For a summary of the trace features,
see the box below.

Fig. 4: A TRACE32 development environment for CoreSight Debug and
CoreSight Trace

• Flexible support for multicore processors with
CoreSight; TRACE32 supports the analysis of
trace information for the ARM ETM and a wide
range of DSP ETMs

•	 Trace of bus cycles of the AMBA AHB bus

•	 Trace of data output of the application with the
help of the Instrumentation Trace Macrocell
(ITM)

• Output of trace data at a trace port or storage
in the on-chip trace memory

• The trace data generation components can
activate each other by means of the cross-
trigger system

• Time-correlated visualization of trace data for
the individual cores

• Code coverage and comprehensive runtime
analyses

TRACE32-Features
for CoreSight-Trace

