
1

 page 1 of 3

TRACE32 Success Story

Hunting Linux Time-Eaters with Hardware
Based Tracing

The ability to analyze the runtime behavior of a target system can be a very important, but often
overlooked, part of the debug process. Often, in a real-time system a late answer is as bad as a
wrong answer. Various software tools exist, especially in the Linux world, to help measure the
performance of an embedded system but sometimes they just end up compounding the problem.
This article shows how Advanced Driver Information Technology GmbH (ADIT) in Hildesheim
used Lauterbach’s TRACE32, a non-intrusive hardware-based trace tool to overcome such a
problem.

Amongst its solutions, ADIT deploys Linux on
both Arm and Intel processors and makes use of
SystemTap [1] to measure overall system
performance in order to locate and remove any
bottlenecks. SystemTap makes use of some
nice Linux features called uprobe and kprobe
which allow the user to create a dynamic trace
of user level and kernel level functions,
respectively.

Under light to moderate system loads there was
no real problem and it was expected that a
software tool such a SystemTap would have a
small impact on the real-time performance of the
overall system. What was unexpected was that
on the Arm based platforms the system was
slowing down significantly more than the Intel
based platforms. To confirm the problem, a
dummy function was created and
measurements taken on uprobe. That showed
that a single call to uprobe was taking twice as
long on the Arm device. Since uprobe internally
uses kprobe, the initial suspicion was that
kprobe was the culprit. This was wrong as
kprobe actually ran faster on the Arm processor
than the Intel one: clearly the problem was in the
uprobe code.

Since the problem was in the software tracing
code, software tracing could not be used to
locate the problem.

“Having no idea where to continue, as the kernel
uprobe code is not really simple, I decided to
use TRACE32 to have an overview on what was
going on. Sometimes, having a nice picture
helps. Based on the chart, I could select some
areas of the code to analyze more deeply.” said
Frederic Berat, developer at ADIT.

So ADIT decided to use TRACE32 PowerTrace
with hardware tracing capabilities. The
hardware-based trace has no impact on the
timing of the target at all, allowing for very deep
analysis on even the smallest code parts.

Both Arm and Intel devices are capable of
providing non-intrusive program flow information.
For Arm, this is called Embedded Trace
Macrocell (ETM) whilst Intel call their equivalent
Intel Processor Trace (IPT). Information about
the execution of code is emitted via a set of
dedicated pins. TRACE32 tools connect to these
pins to collect this data and then analyze it to
produce a functional flow of the application and
detailed timing of each function.

2

 page 2 of 3

Even in complex environments, TRACE32 is
able to record and analyze the complete
program flow, including user level applications
and kernel code. The functional flow of the
whole system is reconstructed and shown
statistically, as a timing graph or as function
hierarchy. The display of a run of a full Linux
system, including kernel and processes results
in a very big chart but TRACE32 assists you in
analyzing the critical parts. This allowed
engineers at ADIT to tightly focus on the kprobe
and uprobe portions of the kernel.

Using the advanced analysis features of
TRACE32 it quickly became apparent that there
were two bottlenecks. (see figs 1 & 2) The most
remarkable part was that uprobe on the Arm
platform calls preempt_disable() and
preempt_enable() four times, each of which
causes a checking of the stack frame which took
about 0.6µs and caused a total delay of 2.4µs.
This did not occur on the Intel processors. A
single difference of only 2.4µs might not seem
like a lot but with many calls to uprobe each
second it soon adds up to a significant delay.
Digging deeper, a second bottleneck was
identified as the string operations, which are a
necessary part of uprobe. This one could
anyway not be fastened as inherent to the
architectural differences between Arm and Intel.

Without the real-time trace this would have been
almost impossible to find; with the real-time
trace it was a simple task to track it down.
Knowing where to look, ADIT identified the main
problem was in the kernel configuration. In
migrating it from another platform, a temporary
setting of CONFIG_PREEMPT_TRACE had
been inadvertently left enabled. The trace
showed this resulted in a stack unwinding on
Arm but a “no-op” on Intel, which caused the
huge performance discrepancy between the two.

[1] https://en.wikipedia.org/wiki/SystemTap

Figure 1: uprobe call on Intel processors

3

 page 3 of 3

LAUTERBACH products and services mentioned herein as
well as their respective logos are trademarks or registered
trademarks of LAUTERBACH. All other product and service
names mentioned are the trademarks of their respective
companies.

Figure 2: uprobe call on Arm

