

 Lauterbach GmbH www.lauterbach.com 1

INSTRUMENTATION TRACE

Andrea Martin, Ingo Rohloff

Lauterbach GmbH

ABSTRACT

More and more chips, mainly for the mobile industry,

provide Instrumentation Traces for output of software

generated information on chip-internal events.

This paper explains how this information is currently

processed by a trace port analyzer and how this

processing could be optimized if standards would exist

for transport protocol and information formats.

1. INTRODUCTION

Most developers are familiar with test scenarios where a

simple printf() is the most efficient implementation. A

typical example is the output of diagnostic information

i.e., test scenarios where the application is already

working as intended, and now operational tests have to be

conducted. Usually, code instrumentation is used for

these tests.

Commonly code instrumentation generates output via

RS-232 or Ethernet. Today chips provide dedicated

Instrumentation Traces for this purpose.

2. OPERATION OF INSTRUMENTATION TRACE

Figure 1: Instrumentation Trace with dedicated off-chip Trace Port

An Instrumentation Trace Module operates like this:

Whenever data is written to one of the associated stimulus

registers, trace packets are generated and emitted at the

trace port.

Figure 1 illustrates the operation of an Instrumentation

Trace with dedicated off-chip trace port. Other

implementation options are e.g. a shared trace port or an

on-chip trace buffer.

In order to use the Instrumentation Trace Module, the OS

and the application software need an Instrumentation

Trace Interface that converts their printf() information

into a sequence of write accesses to the stimulus registers.

Ideally this is done with only small overhead.

Apart from classical printf(), a variety of other

information (PAYLOAD) can be emitted via an

Instrumentation Trace:

• Value information (like variable values)

• Application events (e.g. function entries and exists)

• Target OS events (like task switches)

• System states (e.g. power saving modes)

• System event counters (e.g. to count interrupts)

For our discussion we assume the payload is wrapped by

a message-based transport protocol.

3. CURRENT SOLUTIONS FOR DISPLAY AND

ANALYSIS

Currently no standards for payload and message formats

exist i.e. the Instrumentation Trace Interface is always

user-specific. A Trace Port Analyzer which records the

emitted trace packets can reconstruct the stream of

stimulus register accesses. The payload itself however

can’t be reconstructed without detailed knowledge of the

user-specific implementation of the Instrumentation

Trace Interface.

 Lauterbach GmbH www.lauterbach.com 2

To provide this knowledge to their trace port analyzer

CombiProbe (128-MB of trace memory, bandwidth of

200 MBit/s per trace pin) Lauterbach offers an open API.

This API makes it possible to load a user-implemented

Custom Trace DLL to the Trace Port Analyzer Software,

which has to perform the following tasks:

1. Reassemble messages from the stimulus register

accesses.

2. Extract payload from messages.

3.a Prepare the payload for analysis and display within

the trace port analyzer GUI.

3.b Pass the payload to external software for analysis

and display.

Instrumentation tracing with CombiProbe can be

performed in two operation modes: conventional tracing

or real-time streaming.

Conventional tracing is done in two steps:

1. The trace packets emitted by the Instrumentation

Trace are sampled at the trace port, reassembled to

stimulus register accesses and placed in trace memory.

2. After sampling is stopped, the stimulus register

accesses are transferred to the host. A Custom Trace

DLL extracts the payload from the stimulus register

accesses and performs its analysis and display within

the trace port analyzer GUI.

Figure 2: A Custom Trace DLL performs the task to analyze and

display the payload within the trace port analyzer GUI when

conventional tracing is used.

Real-time streaming, in contrast to conventional tracing,

concurrently samples and analyzes the data: The trace

packets emitted by the Instrumentation Trace are sampled

at the trace port, reassembled to stimulus register accesses

and placed in trace memory. From there they are directly

transferred to the host. A Custom Trace DLL extracts the

payload and passes it e.g. via a named pipe to an external

Custom Trace Analysis and Display Software.

Figure 3: The Custom Trace DLL extracts the payload and passes it to

the Custom Trace Analysis and Display Software when the trace port

analyzer works in real-time streaming mode.

Each operation mode has its specific strengths.

Conventional Tracing:

• Can cope with high loads on the trace port.

• Provides a reasonable amount of trace information.

• Allows effective troubleshooting by examine the local

history of an error condition.

Real-time Streaming:

• Trace information can be inspected while

recording/analyzing.

• If trace data is stored to file (long-time trace) trace

memory size is limited only by mass storage device.

• Unlimited sampling time if trace data is analyzed and

displayed (real-time profiling) and then discarded.

The current solution requires that the user has to design

and implement his own Instrumentation Trace Interface

and Custom Trace DLL. This is likely a major hurdle to

begin with instrumentation tracing. Standards for payload

and transport protocol would make the usage of

Instrumentation Traces much simpler and would likely

make it more popular.

 Lauterbach GmbH www.lauterbach.com 3

4. PROPOSAL FOR A PAYLOAD STANDARD

As a starting point for a standardization discussion,

Lauterbach would like to suggest two exemplary payload

formats.

Task Information Messages

Task Information Messages make a task run-time analysis

or, to be more precise, a task state analysis possible. The

presented message format is based on the assumption that

tasks are dynamically created and ended by the target OS

(e.g. Linux).

Figure 4: Three types of messages are required for task state analysis.

1. Task Creation Messages are emitted whenever a new

task is created. For conventional tracing, with a cyclic

trace buffer of limited size, they can also be used as

synchronization messages. Synchronization messages

are sent periodically to guarantee that full information

for all existing tasks is always in the trace buffer.

2. Task State Messages are emitted whenever the state

of a task is changed. Examples for task states are:

running, ready, waiting, suspended.

3. End of Task Messages are emitted whenever a task

ends or is terminated otherwise.

Instruction Watchpoint Messages

Instruction Watchpoint Messages are emitted whenever

selected high-level language code lines are executed.

They can be used, e.g. to analyze how frequently various

interrupt handlers have been started. The Watchpoint

Group provides a mechanism to add structure to the

analysis of Instruction Watchpoint Messages. They

enable e.g. the analysis software to analyze the

Instruction Watchpoint Messages by groups.

Figure 5: The format of Instruction Watchpoint Messages.

If an Instruction Watchpoint Database is generated and

added, the Trace Analysis and Display Software on the

host can display more verbose information on the source

and the meaning of a watchpoints.

An Instruction Watchpoint Database could contain this

information:

• Source file name and source line number for the

executed instruction.

• Attributes, e.g. a string that describes the meaning of

the watchpoint more clearly.

Figure 6: Format example for the information included in the

Instruction Watchpoint Database.

The major advantage of the Watchpoint Message

approach is its bandwidth efficiency; Meta data is stored

in the Watchpoint Database on the host and doesn’t need

to be emitted by the target.

5. CONCLUSION

Standards for common use cases would certainly

encourage many users to start with instrumentation

tracing. They would also allow preconfigured trace tools

and third-party software for analysis and display.

6. REFERENCES

[1] About the Instrumentation Trace Macrocell,

http://infocenter.arm.com

[2] Ingo Rohloff, Presentation “TRACE32 and CoreSight for

Cortex-M3”, May 2010

