
www.lauterbach.com page 1source: LAUTERBACH NEWS 2007

Until now it has been common practice to use
two different debuggers in the development of
embedded Linux applications. To start up the
target hardware a JTAG debugger is normally
used. As soon as the essential components of
embedded Linux are running on the target the
process debugging continues with GDB.

At Embedded Systems Conference 2007, Lau-
terbach will be presenting an integrated Linux
debugger that combines these two debugging
concepts. Development times for embedded Li-
nux applications can then be reduced consid-
erably since this allows the strengths of both
methods to be used in a uniform user interface.

The following shows the concepts of the integrated
Linux debugger using the ARM architecture as an
example.

Stop Mode Debugging
A JTAG debugger works with so-called Stop Mode
Debugging: The processor and thus the whole sys-
tem are stopped at a breakpoint. Information about
the state of the processor or the target hardware
can now be read out via the JTAG interface (see
Fig. 1).

Fig. 1: �In Stop Mode Debugging, the processor and thus the
whole system is stopped via the JTAG interface.

Some advantages of Stop Mode Debugging:

•	 The only requirement for Stop Mode Debugging
is a functioning JTAG interface. This enables de-
bugging from the reset vector.

•	 Debugging of the kernel and beyond process
boundaries is possible using a debugger that of-
fers both Linux and MMU support.

•	 If the software ceases to react, the processor
can be stopped to find out the point in the code
where the processor hung up mistakenly.

 •	If the processor is stopped neither the kernel or
any other process can cause any disturbing ef-
fects.

However, Stop Mode Debugging has a serious dis-
advantage:

As soon as the processor stops, all communication
interfaces are also stopped. The usual result of this
is that external devices that communicate with the
Linux application via Ethernet, Bluetooth or CAN
will cut the connection as the application is no lon-
ger responding. Therefore, stopping at a breakpoint
can change the state of the overall system. Trying
to continue debugging may then be meaningless.

Integrated Run & Stop Mode Debugging
for Embedded Linux

Integrated Run &
Stop Mode Debugging

Embedded Linux with
GDB as debug agent

	 ARM	
	 Run mode debugging via DCC available

	 ARM 	
	 Run mode debugging via Ethernet
	 planned for Q2/2007

	 PowerPC	
	 Run mode debugging via Ethernet
	 planned for Q2/2007

Symbian OS with
TRK as debug agent
	 ARM 	
	 Run mode debugging via DCC available

Integrated Run & Stop Mode Debugging for Embedded Linux

www.lauterbach.com page 2source: LAUTERBACH NEWS 2007

Fig. 2: �In Run Mode Debugging, the selected process is stopped
while the overall system continues to run.

Run Mode Debugging
GDB works in so-called Run Mode Debugging: At
a breakpoint, only the selected process is stopped,
the kernel and all other processes continue to run.

However, GDB is purely a software debugger. The
following is required for debugging:

•	 GDB server running as a Linux process on the
target hardware

•	 debugger software – here TRACE32 – on the
host (see Fig. 2)

TRACE32 communicates with the GDB server via
an RS232 or Ethernet interface to query information
about the currently stopped process.

Run Mode Debugging is always ideal:

•	 if startup of the target hardware has been com-
pleted.

•	 if the GDB server can always be activated – that
is, the communication interface is running prop-
erly and the processor has not mistakenly hung
up at a code point.

Quite clearly, both debugging methods have great
strengths and weaknesses. For this reason, Lau-
terbach now offers a debugger that combines the
two methods in such a way that their strengths are
fully put to use, while their weaknesses disappear
completely.

Integrated Run & Stop
Mode Debugging
The TRACE32 debugger with Integrated Run &
Stop Mode Debugging for embedded Linux works
as follows (see Fig. 3):

1.	The TRACE32 debugger is first started via the
JTAG interface in Stop Mode Debugging. In a
first step, the target hardware and the Run Mode
Debugging (GDB) must be configured.

2.	If the startup of the target hardware is the focus,
Stop Mode Debugging (JTAG) is used.

Fig. 3: To test, Run Mode or Stop Mode Debugging may be used depending on requirements.

Integrated Run & Stop Mode Debugging for Embedded Linux

www.lauterbach.com page 3source: LAUTERBACH NEWS 2007

3.	After the hardware startup, TRACE32 can switch
over to Run Mode Debugging (GDB) for applica-
tion debugging. Individual processes can now be
tested while the complete system is running.

4.	If the connection to the GDB server is cut dur-
ing Run Mode Debugging, you can switch back
to Stop Mode Debugging at any time to find the
cause of the problem.

Simultaneously with the implementation of Inte-
grated Run & Stop Mode Debugging, the following
functions have been added to Run Mode Debug-
ging:

•	 For the ARM architecture, the Debug Communi-
cations Channel (DCC) can be used as the com-
munication interface in addition to ethernet and
RS232. In this way, Run & Stop Mode Debug-
ging can function with JTAG as the only interface
(headless target).

•	 If required, it is possible to have simultaneous
debugging of two or more processes.

DCC as communication
interface
The JTAG interface for the ARM architecture in-
cludes a so-called Debug Communications Chan-
nel (DCC). In principle, information exchange via
DCC should be possible between

•	 debugger software on the host (TRACE32)

•	 any application on the target system – here, with
the GDB server

while the application is running on the processor.

Fig. 4: �Instead of an external communication interface, you can
use the DCC function of the JTAG interface as a communi-
cation channel to the GDB server.

Therefore, if TRACE32 uses the DCC function of
the JTAG interface to query the GDB server for
information about the currently stopped process,
no external communication interface is needed for
Run Mode Debugging (see Fig. 4).

Simultaneous debugging
of several processes

Fig. 5: �Using T32Server, a separate GDB server can be assigned
to each process, enabling the simultaneous debugging of
processes.

In some cases, it is necessary to debug several
processes simultaneously. To be able to offer this
feature, Lauterbach now provides the T32Server for
Run Mode Debugging.

After T32Server has been started as a Linux pro-
cess from the terminal window, the following is
possible using TRACE32 commands:

•	 Starting processes (TASK.RUN)

•	 Attaching to running processes (TASK.SELect)

•	 Ending processes (TASK.KILL)

When a process is started/attached, a sepa-
rate GDB server is assigned to each process by
T32Server (see Fig. 5).
Fig. 6 on the next page shows TRACE32 Run Mode
Debugging using the example of a TASK.List win-
dow.

Summary
Integrated Run & Stop Mode Debugging offers an
optimum basis for the efficient development of em-
bedded Linux applications enabling the user to find

Integrated Run & Stop Mode Debugging for Embedded Linux

www.lauterbach.com page 4source: LAUTERBACH NEWS 2007

complex hardware and software errors
quickly using a single development tool
and a universal user interface. In addi-
tion no modifications are needed to ei-
ther the application or Linux.

Integrated Run & Stop Mode Debug-
ging has been supported for the ARM
architecture since November 2006 and
can be used at no extra cost with every
TRACE32 JTAG debugger for an ARM
processor.

An implementation for PowerPC archi-
tectures is planned for May 2007.

Fig. 6: �The hello and helloloop processes are stopped. The helloloop process is
the process currently selected for debugging.

