
www.lauterbach.com page 1source: LAUTERBACH NEWS 2007

Until now it has been common practice to use
two different debuggers in the development of
embedded Linux applications. To start up the
target hardware a JTAG debugger is normally
used. As soon as the essential components of
embedded Linux are running on the target the
process debugging continues with GDB.

At Embedded Systems Conference 2007, Lau-
terbach will be presenting an integrated Linux
debugger that combines these two debugging
concepts. Development times for embedded Li-
nux applications can then be reduced consid-
erably since this allows the strengths of both
methods to be used in a uniform user interface.

The following shows the concepts of the integrated
Linux debugger using the ARM architecture as an
example.

Stop Mode Debugging
A JTAG debugger works with so-called Stop Mode
Debugging: The processor and thus the whole sys-
tem are stopped at a breakpoint. Information about
the state of the processor or the target hardware
can now be read out via the JTAG interface (see
Fig. 1).

Fig. 1: In Stop Mode Debugging, the processor and thus the
whole system is stopped via the JTAG interface.

Some advantages of Stop Mode Debugging:

•	 The	only	requirement	for	Stop Mode Debugging
is a functioning JTAG interface. This enables de-
bugging from the reset vector.

•	 Debugging	 of	 the	 kernel	 and	 beyond	 process	
boundaries is possible using a debugger that of-
fers both Linux and MMU support.

•	 If	 the	 software	 ceases	 to	 react,	 the	 processor	
can	be	stopped	to	find	out	the	point	in	the	code	
where the processor hung up mistakenly.

	•	If	the	processor	is	stopped	neither	the	kernel	or	
any other process can cause any disturbing ef-
fects.

However, Stop Mode Debugging has a serious dis-
advantage:

As soon as the processor stops, all communication
interfaces are also stopped. The usual result of this
is that external devices that communicate with the
Linux application via Ethernet, Bluetooth or CAN
will cut the connection as the application is no lon-
ger responding. Therefore, stopping at a breakpoint
can change the state of the overall system. Trying
to continue debugging may then be meaningless.

Integrated Run & Stop Mode Debugging
for Embedded Linux

Integrated Run &
Stop Mode Debugging

Embedded Linux with
GDB as debug agent

 ARM
 Run mode debugging via DCC available

 ARM
 Run mode debugging via Ethernet
 planned for Q2/2007

 PowerPC
 Run mode debugging via Ethernet
 planned for Q2/2007

Symbian OS with
TRK as debug agent
 ARM
 Run mode debugging via DCC available

Integrated Run & Stop Mode Debugging for Embedded Linux

www.lauterbach.com page 2source: LAUTERBACH NEWS 2007

Fig. 2: In Run Mode Debugging, the selected process is stopped
while the overall system continues to run.

Run Mode Debugging
GDB works in so-called Run Mode Debugging: At
a breakpoint, only the selected process is stopped,
the kernel and all other processes continue to run.

However, GDB is purely a software debugger. The
following	is	required	for	debugging:

•	 GDB	server	 running	as	a	Linux	process	on	 the	
target hardware

•	 debugger	 software	 –	 here	 TRACE32	 –	 on	 the	
host (see Fig. 2)

TRACE32	communicates	with	 the	GDB	server	via	
an	RS232	or	Ethernet	interface	to	query	information	
about the currently stopped process.

Run Mode Debugging is always ideal:

•	 if	startup	of	the	target	hardware	has	been	com-
pleted.

•	 if	the	GDB	server	can	always	be	activated	–	that	
is, the communication interface is running prop-
erly and the processor has not mistakenly hung
up at a code point.

Quite clearly, both debugging methods have great
strengths and weaknesses. For this reason, Lau-
terbach now offers a debugger that combines the
two methods in such a way that their strengths are
fully put to use, while their weaknesses disappear
completely.

Integrated Run & Stop
Mode Debugging
The	 TRACE32	 debugger	 with	 Integrated Run &
Stop Mode Debugging for embedded Linux works
as	follows	(see	Fig.	3):

1.	The	 TRACE32	 debugger	 is	 first	 started	 via	 the	
JTAG interface in Stop Mode Debugging. In a
first	step,	the	target	hardware	and	the	Run Mode
Debugging	(GDB)	must	be	configured.

2. If the startup of the target hardware is the focus,
Stop Mode Debugging (JTAG) is used.

Fig. 3:	To	test,	Run	Mode	or	Stop	Mode	Debugging	may	be	used	depending	on	requirements.

Integrated Run & Stop Mode Debugging for Embedded Linux

www.lauterbach.com page 3source: LAUTERBACH NEWS 2007

3.	After	the	hardware	startup,	TRACE32	can	switch	
over to Run Mode Debugging (GDB) for applica-
tion debugging. Individual processes can now be
tested while the complete system is running.

4. If the connection to the GDB server is cut dur-
ing Run Mode Debugging, you can switch back
to Stop Mode Debugging	at	any	time	to	find	the	
cause of the problem.

Simultaneously with the implementation of Inte-
grated Run & Stop Mode Debugging, the following
functions have been added to Run Mode Debug-
ging:

•	 For	the	ARM	architecture,	the	Debug Communi-
cations Channel (DCC) can be used as the com-
munication interface in addition to ethernet and
RS232.	 In	 this	way,	Run & Stop Mode Debug-
ging can function with JTAG as the only interface
(headless target).

•	 If	 required,	 it	 is	 possible	 to	 have	 simultaneous	
debugging of two or more processes.

DCC as communication
interface
The JTAG interface for the ARM architecture in-
cludes a so-called Debug Communications Chan-
nel (DCC). In principle, information exchange via
DCC should be possible between

•	 debugger	software	on	the	host	(TRACE32)

•	 any	application	on	the	target	system	–	here,	with	
the GDB server

while the application is running on the processor.

Fig. 4: Instead of an external communication interface, you can
use the DCC function of the JTAG interface as a communi-
cation channel to the GDB server.

Therefore,	 if	 TRACE32	 uses	 the	 DCC	 function	 of	
the	 JTAG	 interface	 to	 query	 the	 GDB	 server	 for	
information about the currently stopped process,
no external communication interface is needed for
Run Mode Debugging (see Fig. 4).

Simultaneous debugging
of several processes

Fig. 5: Using	T32Server,	a	separate	GDB	server	can	be	assigned	
to each process, enabling the simultaneous debugging of
processes.

In some cases, it is necessary to debug several
processes simultaneously. To be able to offer this
feature, Lauterbach now provides the T32Server for
Run Mode Debugging.

After T32Server has been started as a Linux pro-
cess from the terminal window, the following is
possible	using	TRACE32	commands:

•	 Starting	processes	(TASK.RUN)

•	 Attaching	to	running	processes	(TASK.SELect)

•	 Ending	processes	(TASK.KILL)

When a process is started/attached, a sepa-
rate GDB server is assigned to each process by
T32Server (see Fig. 5).
Fig.	6	on	the	next	page	shows	TRACE32	Run Mode
Debugging	using	the	example	of	a	TASK.List	win-
dow.

Summary
Integrated Run & Stop Mode Debugging offers an
optimum	basis	for	the	efficient	development	of	em-
bedded	Linux	applications	enabling	the	user	to	find	

Integrated Run & Stop Mode Debugging for Embedded Linux

www.lauterbach.com page 4source: LAUTERBACH NEWS 2007

complex hardware and software errors
quickly	using	a	single	development	tool	
and a universal user interface. In addi-
tion	no	modifications	are	needed	to	ei-
ther the application or Linux.

Integrated Run & Stop Mode Debug-
ging has been supported for the ARM
architecture since November 2006 and
can be used at no extra cost with every
TRACE32	JTAG	debugger	 for	an	ARM	
processor.

An implementation for PowerPC archi-
tectures is planned for May 2007.

Fig. 6: The hello and helloloop processes are stopped. The helloloop process is
the process currently selected for debugging.

