
www.lauterbach.com page 1source: LAUTERBACH NEWS 2008

Introduction
It will soon no longer be possible to master the
growing complexity of software without the use of
CASE tools. UML, especially, has enabled the uni-
form design of modular software components, in-
cluding automatic code generation, which prevents
common coding errors right from the start.

However many companies shy away from the per-
ceived effort required for the changeover to these
new techniques. They have a code base that has
been built up over decades and although the soft-
ware has been constantly extended and improved.
This has also led to the creation of more and more

“spaghetti code”. Millions of functioning lines of
code would need to be analyzed, re-programmed,
and finally re-tested.

In most cases these fears are unfounded. Existing
C code can be transferred to a UML model element
with almost no changes necessary. Future exten-
sions can then be written as UML models, gener-
ated, and integrated with the “old” C code. As a
result, an easy and progressive transition from C to
UML is possible. The following example explains
these procedures:

1. Transfer from “old” C code to UML.

2. Integration of a new functionality coded in UML.

3. Uniform testing and debugging in UML, C++
and C.

Old C code
At the outset, we have a finished project in C code.
The following example uses a traffic light system
(which is a favorite of software designers due to
its simplicity). There is a standard intersection with
four sets of traffic lights. The traffic lights located
opposite each other are controlled in parallel. The
traffic lights at the right angle to them are, of course,
controlled complementary. The different traffic light
phases are: red – red and yellow – green – yellow –
red. During the red phase of one set of traffic lights,
right of way switches to the opposite direction.
As a result, there is a short period when the lights
facing in all directions are on red (this is important,
as we shall see later).

This circuit is coded in C as a simple control (switch-
case) in a continuous loop (while (1)). This continu-
ous loop is found directly in the “main()” routine of
the application, and is called immediately after ini-
tialization (see Fig. 2).

New requirements
The street planners have decided that a tramline
should cross the intersection in both directions 〉〉

Integration, testing and debugging of C code
together with UML-generated sources

Fig. 1: Adding tram traffic lights to a traffic intersection

 ...
 int main (void)
 {
 horizontal = vertical = red;
 state = closed_to_h;

 while (1)
 {
 switch (state)
 {
 case closed_to_h:
 wait (1);
 horizontal = yellowred;
 state = yellowred_h;
 break;

 case yellowred_h:
 wait (3);
 horizontal = green
 state = green_h;
 break;
 ...

Fig. 2: Existing C code for traffic-light control; the “main()” routine
includes a continuous loop that contains the logic as a switch-
case construct.

Integration, testing and debugging of C code together with UML-generated sources

www.lauterbach.com page 2source: LAUTERBACH NEWS 2008

(vertically as well as horizontally, refer to Fig. 1 on
page 1). Therefore, the trams must be stopped at
the intersection by their own set of traffic lights. At
the request of the tram driver, the intersection is
blocked for cars at the next red light phase, and the
tram is given right of way.

UML wrapper for C code
We could, of course, just “patch” these require-
ments into our C code. But doing so would only
make the function larger and more complicated,
which is exactly what we want to avoid. So instead
of this, we will take a modular approach to the
problem and solve it with the help of UML.

Firstly, we need to “trans-
fer” the existing appli-
cation over to our UML
model, which is easier
than it sounds: We create
one class, called “Car-
Junction”, which contains
the complete “old” appli-
cation (see Fig. 3).

The only thing that we need to adapt are the corre-
sponding interfaces. The usual continuous loop in

main() is already part of the framework and there-
fore has to be omitted. Instead, “main()” is renamed

“processJunction()”, and this becomes our new
starting point. The end point of the function will be
the phase when all traffic lights are on red. Now, if
required, we can execute additional actions during
this red phase (see Fig. 4). – And that’s it.

UML design for new requirements
Now we can take care of the design for the new
requirements. We build a class called “Junction”,
which contains the old traffic light controls, called

“CarJunction”, as well as two new tram traffic lights
(Fig. 5). The design is now finished, and we can
focus on the behavior of the extended intersection,
using a state transition diagram.

The old application is once again used as a starting
point, and its whole behavior is incorporated into a
single state of the new intersection (state: cars), see
Fig. 6 on the opposite page. When the new model
has this state, it works in exactly the same way as
the old application. Only when the new feature – the
tram driver requests right of way – is required, the old
code is left and the new model starts. The phases
and the transition of states for both tramlines are de-
fined in the state diagram: request – wait – release –
wait (possibly a switch between tramlines). This
completes our model of the new requirements. 〉〉

Fig. 3: The “CarJunction”
class, containing the com-
plete “old” application

 void processJunction (void)
 {
 horizontal = vertical = red;
 state = closed_to_h;

 do
 {
 switch (state)
 {
 case closed_to_h:
 wait (1);
 horizontal = yellowred
 state = yellowred_h;
 break;
 /*........*/
 case yellow_v:
 wait (3);
 vertical = red;
 state = closed_to_h;
 break;

 } // switch (state)
 } while ((state != closed_to_h)
 && (state != closed_to_v));
 } // processJunction()

Fig. 4: Modified C code that can be integrated in the UML tool
in this form

Fig. 5: The new class, “Junction”, integrating the “old” traffic-light
switching and the two new traffic lights for the tram

Integration, testing and debugging of C code together with UML-generated sources

www.lauterbach.com page 3source: LAUTERBACH NEWS 2008

Code generation
We can now generate the executable application.
For good UML tools this is all that is required for
generating the finished application for the above-
mentioned model. However, now is the time to
note a few points about integration. Our initial ap-
plication is written, and remains, in C. UML tools,
however, normally generate C++ code, meaning
that our “CarJunction” is a wrapper class that ref-
erences the C code. Here, the usual adaptations
between C and C++ must be taken into account.

Typically, an RTOS is used to manage the model
and must be integrated as required. Once all this
has been done, a simple press of a button gener-
ates a ready-to-run application from the model.

Target run
In the field of embedded technology, the target
hardware is often different from the computers
used for development. This means that we need to
load the generated application onto the so-called

“target” and run it there. This can be done using any
external tool that can install code on the target.

This is especially easy if the UML tool and the de-
bugger communicate over a common (software)
interface, such as the integration between the UML

tool Rhapsody from Telelogic and the TRACE32
debugger from Lauterbach. This allows you, at the
press of a button in the modeling tool, to load the
application to the target over the debug interface,
and – if required – start it straight away. The com-
plete cycle of design – modeling – generation – run
is possible in one GUI.

Testing in C
As was mentioned at the start, performing testing
and debugging in a heterogeneous environment
pose certain requirements. It must be ensured that
the whole application can be tested in its respec-
tive function and implementation.

Although we are assuming that we already had a
functioning application in C, debugging should still
be possible. After all, the transfer of new features
to the “old” code needs to be tested, and the old
source code maintained. At least for this part of the
application any commercial debugger can be used,
as it is now standard in the field of embedded tech-
nology to debug C code.

Testing in C++
The process becomes more interesting when we
begin testing the new features at source level.
Most UML tools generate C++ code with all the 〉〉

Fig. 6: State diagram of new traffic-light switching

Integration, testing and debugging of C code together with UML-generated sources

www.lauterbach.com page 4source: LAUTERBACH NEWS 2008

characteristics that belong to it, such as templates,
polymorphism, and exception handling. It must be
remembered that the debugger used must provide
full support for the C++ dialect of the compiler. The
TRACE32 debugger from Lauterbach supports all
current C++ compilers, and so guarantees com-
fortable debugging of object-oriented C++ code.

Testing in UML
But of course, we didn’t write our code in C++, but
rather in UML. And what would
make more sense than to carry out
debugging on the modeling level?

Rhapsody from Telelogic offers sev-
eral options to serve this purpose.

If the behavior of the application is
completely modeled in UML, the
sequence can be simulated directly

from the model. For simple behavior analysis, the
actual target hardware is not required. As the tar-
get will have a different timing than the simulation,
the application can also be run as an “animation”
on the real target. The UML tool controls and vi-
sualizes the target process over a communication
channel (serial or Ethernet). So it is possible to per-
form single steps through state charts or to induce
events.

In combination with a TRACE32 debugger, this
communication can also take place over the de-

bug interface if there is no other interface available.
Direct debugging in the UML model is made pos-
sible via “animation”.

Integrated UML -> C++ -> C
debugging
Now we have a situation spread over three levels:
UML, C++, and C. When an error is found, espe-
cially in C++ code, it is better to repair it in the mod-
el, and not in the generated C++ code itself. On the

other hand, the debugging of the implementa-
tion of a model element is best carried out in the

source, without having to search for it.

The integration of TRACE32 and Rhapsody offers
extensive functionality in order to link these levels
together (Fig. 7), such as the implementation of
simple, interdependent navigation. A single mouse
click on a model element in Rhapsody is enough
to display the corresponding source code in
TRACE32. This then allows the extensive analysis
of variables, function calls, and so on. It also works
the other way around; with a simple click on a line
of source code in the debugger, the accompany-

Fig 7: The integration of TRACE32 and Rhapsody allows a
debugging in UML, C++ and C.

Integration, testing and debugging of C code together with UML-generated sources

www.lauterbach.com page 5source: LAUTERBACH NEWS 2008

ing model element is highlighted in the UML tool. 〉〉
This is especially helpful if a problem is found with
the debugger, which needs to be repaired in the
model. A lengthy search and navigation to the
relevant element thus becomes unnecessary.

Debugger breakpoints can also be defined in the
model and the target can be set into Go or Stop
status. This enables you to set a breakpoint at a
class and start the target, all from within the UML
tool. The debugger stops the application as soon as
the model element under examination is invoked.

Summary
A complete redesign is not always necessary.
Particularly for projects where re-engineering is not
possible due to time or organization constraints, a

step-by-step approach is often appropriate. This
limits the effort required and allows to import the
existing software step by step into a modern and
innovative CASE tool.

It is, of course, essential that the tools used in this
process help and don’t hinder; the selection of the
correct tools is an important factor. They should
not just be able to perform these tasks, but should
also encourage them.

Lauterbach and Telelogic have achieved just this
with the integration of their tools TRACE32 and
Rhapsody. Both companies want to help their cus-
tomers keep software quality at high levels, despite
increasing complexity and ever more requirements.
Now nothing stands in the way of modernizing your
existing code bases with UML.

