
DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

www.lauterbach.com 1

Germany	 Lauterbach GmbH
France	 Lauterbach S.A.R.L.
Great Britain	 Lauterbach Ltd.
Italy	 Lauterbach Srl
USA	 Lauterbach Inc.
China	 Suzhou Lauterbach Technologies Co. Ltd.
Japan	 Lauterbach Japan Ltd.

Lauterbach, the leading manufacturer of real-time
trace tools, is introducing its new long-term trace
for the ARM ETMv3. The aim of this innovation is
to enable greatly extended measurement times for
TRACE32 profiling and code-coverage functions.

This article describes the concepts of the long-term
tracing technology as well as the technical require-
ments it places on the trace tool and the respective
host computer.

ARM ETMv3

Tracing means recording detailed information about a
program as it runs on the core. This information is usu-
ally generated by on-chip trace logic. For ARM cores,
this logic element is known as the Embedded Trace
Macrocell or ETM. The latest version of this logic, the
ETMv3, can be found today in most ARM11 and Cor-
tex cores. Since the functionality of the on-chip trace
logic is the basis for the trace data, let’s start with a
brief introduction.

The ETMv3 generates a package-oriented trace log.
The following information can be generated at pro-
gram runtime and collected in trace packages:

•	 Program flow packages: Contain information
about the program instructions executed by the
core – mainly the target addresses of jumps as well
as the number of instructions executed between
two jumps.

•	 Data flow packages: Contain the memory ad-
dresses read/written by the program as well as the
respective data values.

•	 Context-ID packages: Contain a process/task ID
in the event that an operating system is running.

The trace packages are output by the on-chip trace
logic via the trace port. The trace port for the ETMv3
typically consists of 8 or 16 pins for the trace pack-
ages plus two pins for the control signals.

To minimize the bandwidth for the package output,
the ETMv3 compresses the trace packages. For ex-
ample, all addresses are shortened by a special algo-
rithm. However, if the data volume is higher than the
maximum bandwidth of the trace port, the FIFO buffer
can overflow and some trace packages can be lost.

Compressing the trace information alone is not
enough to prevent FIFO overflows. The next stage
is provided by the programmability of the ETMv3. To
reduce the number of trace packages, you can sim-
ply define what trace information you want generated
and output. For example, no data flow information is
needed for the TRACE32 profiling functions. This is
very useful because it is mainly the data packages
that inflate the trace volume at the port.

Classical tracing currently consists of two steps that
are carried out consecutively:

LONG-TERM TRACE ETMv3

Implementation

Classic Tracing

Classic tracing means:
record first, then analyze

www.lauterbach.com 2

1. Recording

The trace packages are sampled at the trace port and
placed in the trace memory.

2. Analysis

The trace packages are transferred from the trace
memory to the host, where they are decompressed
and analyzed.

The classical tracing method is limited in that only
the section of the program that fits within the buffer
memory can be saved for evaluation and analysis.
The memory depth of the TRACE32 trace tools is cur-
rently between 1 GBytes and 4 GBytes. This allows
the recording of up to 3 G trace packages.

Recording

In classical tracing, the real challenge is the recording
of the trace packages. Since ARM cores today usu-
ally run at frequencies up to 1 GHz, only a fast trace
port can guarantee the loss-free output of all trace
packages.

The Lauterbach trace tools for the parallel ETMv3
support package recording at a frequency of up to
275 MHz DDR and can therefore handle the following
data rates (see Figure 1):

•	 8.8 GBit/s with 16 pins for the trace package

•	 4.4 GBit/s with 8 pins for the trace packages

With the serial trace tools for the ETMv3, data rates of
up to 20 GBit/s can be recorded.

Analysis

To analyze the recorded program section, you have to
transfer the trace packages from the trace memory to
the host, decompress and then evaluate them.

Since the trace packages for the program flow con-
tain no program code, this has to be added prior to
analysis. The following data is used:

•	 The program code read by the TRACE32 software
from the target system memory over the JTAG in-
terface.

•	 Symbol and debug information loaded by the user
for the TRACE32 software.

Long-term tracing is implemented by transferring
the trace packages to the host during recording and
analyzing them immediately. In this case, the trace
memory of the TRACE32 trace tool is basically used
as just a FIFO.

Extremely large data volumes are created during
a long-term trace, so it is advisable to analyze the
trace packages in parallel with the recording. Even if
the trace packages are compressed before they are
stored in a file, up to 5 GBytes are typically collected
per hour. At the same time, you have to allow a lot of
time for further analysis after recording is completed.
For example, if you collect trace packages for a two-
hour program run in a file, you need several hours for
a subsequent conventional analysis, even on a high-
powered host.

Fig. 1:	 The trace tool for the parallel ETMv3 supports a data rate of
8.8 GBit/s with 16 pins for the trace packages

Long-term tracing means:
recording and direct analysis

Long-Term Tracing

www.lauterbach.com 3

If large data volumes are to be quickly recorded, trans-
ferred, and analyzed in long-term tracing, the follow-
ing conditions must be met:

•	 Fast host
•	 Fast trace tool
•	 Compact data formats

Fast Host

In order to be able to analyze the trace packages on
the host at program runtime, you need a fast dual-
core computer. Here, one core receives the trace
packages while the second core evaluates the pack-
ages in parallel.

For the analysis, the program code is needed in ad-
dition to the trace packages. Since many ARM cores
are not able to read the code from the target system
memory at runtime, the code must be copied to the
TRACE32 software before the start of the long-term
trace.

Fast Trace Tool

As described above for classical tracing, the trace
tool has to sample the trace packages loss-free at a
fast trace port. High-speed transfer of the trace pack-
ages to the host is the new requirement for long-time
tracing. For this purpose, the TRACE32 trace tool pro-
vides a GBit Ethernet interface. If the trace tool is con-
nected peer-to-peer to the host, a transmission rate of
more than 500 MBit/s can be achieved (see Figure 2).

The maximum transmission rate to the host is current-
ly the bottleneck of long-term tracing. This means that
long-term tracing will only work if the average data
rate at the trace port does not exceed the maximum
transmission rate to the host (see Figure 3).

High peak loads are not critical since they can be
buffered by the trace memory.

Fig. 2:	 Long-term tracing needs a fast peer-to-peer interface to the host

Fig. 3:	 Long-term tracing works for this example if the average load at the trace port does not exceed 500 MBit/s

www.lauterbach.com 4

Compact Data Formats

Since the maximum transmission rate to the host is
limited, it is important to keep the data volume as
compact as possible. The data volume can be influ-
enced in two ways:

1.	Optimal programming of ETMv3
2.	Compact buffering of trace packages

1.	Optimal programming
of ETMv3

You can directly influ-
ence the data rate at the
trace port by program-
ming the ETMv3 so that
trace packages are only
generated for analysis-
relevant information.
The data flow packages
that represent a high
load for the trace port
are not usually needed
for profiling and code
coverage.

The other factors influ-
encing the average data
rate at the trace port
unfortunately have to be

considered as unchangeable:

ARM core frequency: The higher the ARM core fre-
quency, the more trace data per second.

Software on the target system: A software program
that makes a large number of jumps and finds data/
instructions in the cache generates more trace pack-
ages per second than a software program that pro-

Software Mobile
Terminal

Floating Point
Arithmetic

HDD
Controller

Trace information
per instruction

0.8 Bit 2.2 Bit 4.3 Bit

Core Cortex-A ARM11 ARM9

Core frequency 500 MHz 300 MHz 450 MHz

Trace port
frequency DDR

166 MHz 75 MHz 150 MHz

RTOS Linux — —

Average data
rate at trace port

340 MBit / s 406 MBit / s 798 MBit / s

Fig. 4:	 The Lauterbach trace tool for long-term tracing with the ETMv3

www.lauterbach.com 5

cesses many sequential instructions and often has to
wait for the availability of data/instructions.

The table on page 4 shows a few examples of aver-
age data rate measurements at the trace port. It is
surprising that the data rate is greatly influenced by
the software running on the core. The core frequency
and the core architecture do not play as significant
of a role.

2.	 Compact buffering

The firmware of the TRACE32 trace tool has been en-
hanced so that, the optimal packing density of the
packages in the trace memory is achieved with 8 pins
for the output of the trace packages.

Summary

In the TRACE32 software, the configuration and anal-
ysis of the long-term trace runs under the name of
Real-Time Streaming – RTS for short.

A Lauterbach trace tool for long-term tracing of the
parallel ETMv3 consists of the following TRACE32
products (see Figure 4):

PowerDebug II: Provides the GBit Ethernet interface
to the host and transmits the trace packages.

Debug cable for the ARM core: Programs the
ETMv3 over the JTAG interface.

PowerTrace II: Stores the trace packages, max.
trace depth currently 4 GBytes.

Preprocessor AutoFocus II: Samples the trace
packages at the parallel trace port and transfers
them to the trace memory.

With long-term tracing, Lauterbach has taken an im-
portant step toward a trace technology that permits
an almost unlimited analysis of the program run. It
is fair to assume that both the processing power of
the hosts and hard-disk capacity will increase con-
stantly during the next few years, so we expect even
more comprehensive analysis options will become
available.

LONG-TERM TRACE ETMv3

Code Coverage-Analysis and Long-Term Tracing

One application for long-term trac-
ing is checking whether all of the
program code is processed during
a system test.

For this code-coverage analysis of
the trace data, the TRACE32 soft-
ware provides a list of all modules/
functions and their code coverage.
Additionally, a statistical summary of
the execution of conditional instruc-
tions is displayed. Each function
can be analyzed in detail: For linear
code, you can see how often a com-
mand was run during the test (exec).
For conditional instructions, you can
also observe how often a command
was skipped because its condition
was not met (notexec).Fig. 5:	 Lists showing code coverage (overview and detailed)

www.lauterbach.com 6

LONG-TERM TRACE ETMv3

Profiling and Long-Term Tracing

For time-critical functions, maximum times are
often defined and have to be checked during the
system test. The long-term tracing feature makes
this check easy and causes of timeouts to be
quickly found.

Verification

First is the check whether time-critical functions

exceed their maximum time. For this purpose, the
ETMv3 should be programmed so that it generates
only trace packages for the program flow and the
context ID. There are two reasons for this:

1.	In this way, the data rate at the trace port is kept as
low as possible.

2.	FIFO overflows preventing an exact analysis of
function nesting are prohibited.

After the long-term trace is started,
the TRACE32 software analyzes
the time behavior of the functions.
The following are analyzed: the
runtime and number of clock cy-
cles during the complete test run,
the function’s share of the total
runtime, and the average “clocks
per instruction” (see Figure 6).

A detailed analysis of the individ-
ual function also shows the time
behavior of the program lines (see
Figure 7).

If the analysis intermittently ex-
ceeds the defined maximum time,
the cause must of course be
found.

Troubleshooting

The long-term trace can be con-
figured so that the trace packag-
es are saved in a file at program
runtime. With a data volume of
5 GBytes/hour, about four days
of the program runtime can be
recorded on an average hard disk.
Using fast, sophisticated search
functions, the TRACE32 software
can then search the trace record-
ing for the excessive function run
and show it in a detailed analysis
(see Figure 8).

Fig. 6:	 Analysis of time behavior of modules and functions

Fig. 7:	 Details of time behavior of program lines of a function

Fig. 8:	 If necessary, details on the longest function run can quickly be displayed

