
www.lauterbach.com page 1source: LAUTERBACH NEWS 2008

Lauterbach, the leading manufacturer world-
wide of high-quality debuggers and real-time
trace tools, is presenting its new debugging
concept for SMP systems at the ESC 2008. SMP
systems use an operating system to distribute
processes dynamically to several cores or hard-
ware threads. SMP Linux on a MIPS 34K will be
demonstrated live at the fair.

Hardware parallelization
To achieve higher processor performance for com-
plex applications and to save energy, more and
more parallelization of tasks is used. The most
popular method is to provide several identical
execution units that can all process the same task.

To most readers, the term “identical execution units”
means symmetric multi-core processors. It is easy
to imagine that the kernel of an operating system
is running permanently on a core and ensures that
the application processes are evenly distributed to
all cores (see Fig. 1).

However, for the parallelization of tasks not neces-
sarily a multi-core processor is required. Hardware
multithreading, for example, is an approach that
enables parallelization also for single-core proces-
sors. Here, we deal with a basic problem of cores

with pipeline architecture: cache misses or data de-
pendencies between the instructions mean that the
pipelined instruction processing has to be stalled
in order to wait for the availability of required data.
The greater the difference between instruction pro-
cessing time and memory access time, the higher
the performance loss.

Hardware multithreading deals with this situation
by making the core process several mutually inde-
pendent tasks quasi-simultaneously. In the case of
an operating system, “tasks” and “processes” are
equivalent.

In principle, this works as follows: As soon as a
task can no longer be further processed because

required data is not yet available,
the processing of another task is
continued.

Fig. 2 shows the processing of
3 tasks on 3 cores with simple
pipeline architecture (at the top)
and then (at the bottom) shows the
execution on a multithreaded core.

In order for hardware multithread-
ing to work, fast switching between
tasks must be possible. This can
be done simply by giving each task
a separate register set for its con-
text. With this method, it is easy to
deduce that the number of register
sets provided by the core defines
how many tasks can be processed
in parallel. For the MIPS 34K the
number is five. In this way, one 〉〉

New debugging concept for
symmetric multiprocessing (SMP)

Fig. 1: SMP Linux on a dual-core processor

Fig. 2: No more stalls in the pipeline, thanks to the quasi-simultaneous processing of
several tasks

New debugging concept for symmetric multiprocessing (SMP)

www.lauterbach.com page 2source: LAUTERBACH NEWS 2008

“execution unit” (a so-called hardware thread) de-
rives from each register set (see Fig. 3).

SMP operating systems
At the hardware level, the parallelization of pro-
cesses is implemented by symmetric multi-core
processors or multithreaded cores. Now software
is needed to organize the parallelization. An operat-
ing system is normally used for this purpose.

One variant, which is primarily suitable for hardware
with identical execution units, is operating systems
that implement symmetric multiprocessing (SMP).
The central feature of SMP operating systems is
the dynamic distribution of task/processes to the
available cores or hardware threads at program
runtime.

Other features:

• One instance of the operating system operates
all cores or hardware threads.

• Each application process can run on each core
or hardware thread. As a rule, only the kernel is
rigidly assigned to a core or hardware thread.

• All cores or hardware threads have equal rights
to request and use resources (e.g.: memory, ex-
ternal interfaces, external devices).

• The operating system provides the functions for
distributing resources to the cores or hardware
threads.

New debug concept
At present, the TRACE32 concept enables just one
core to be debugged with one instance of the de-
bugger (Core View). Up to now, this concept has

also worked perfectly for multi-core processors
since these processors were also operated as
asymmetric multiprocessing systems (AMP). Asym-
metric multiprocessing means: An independent in-
stance of an operating system runs on each core.
For AMP systems, this always statically defines
which process is running on which core. In this
way, the debug information can also be uniquely
assigned to the corresponding core.

In contrast, on SMP systems, the processes are not
assigned to the cores or hardware threads until run-
time. For this reason, it no longer makes sense to
start a debugging instance specifically for the de-
bugging of a selected core or hardware thread.

System View

As an alternative to the Core View, which works
very well for AMP systems, there is now the System
View for SMP systems.

With the System View, only one instance of the
TRACE32 debugger is started to debug all cores
or hardware threads (see Fig. 4). Here too, root of
information display is one core or hardware thread.
The new aspect here is that the information 〉〉

Fig. 3: SMP Linux on a multithreaded core – here MIPS 34K

Fig. 4: Only one instance of the TRACE32 debugger is used for
debugging all cores or hardware threads.

New debugging concept for symmetric multiprocessing (SMP)

www.lauterbach.com page 3source: LAUTERBACH NEWS 2008

display can be switched by a command to another
core or hardware thread.

Process debugging can now be done as follows:

1. The current list of all active task/processes is
used to identify the core or hardware thread on
which a task/process is running (Fig. 5). Linux
uses here the term CPU instead of using core or
hardware thread.

2. A command is used to switch the information
displayed in the debugger to the required core or
hardware thread (Fig. 6).

Common breakpoints

The fact that an SMP operating system does not
assign application processes to a core or hardware
thread until runtime also has consequences for the
setting of on-chip breakpoints.

A simple example: The “sieve” process is to be
stopped as soon as it writes to the variable “xyz”. In
order for the debugger to be able to implement this
request, it must program the break logic of all cores
or hardware threads for this break condition since
it cannot know beforehand the core or hardware
thread on which the “sieve” application process will
run. This means that even if each core or hardware
thread has its own break logic, the debugger pro-
grams the breakpoints for the user as if there were
only one break logic shared by all.

When setting of software breakpoints, for the im-
plementation of which the original instruction in
memory is temporarily overwritten by a break in-
struction, there are no changes compared to AMP
systems. Operating systems protect the address
spaces of processes from each other. However, if
the same application process is started more than

once, Linux (for example) loads the program code
only once. Each instance of the application process
thus sees the same program memory as well as the
software breakpoints set there. To make sure that
the program execution is stopped only in the de-
sired application process, the TRACE32 debugger
enables the setting of process-specific software
breakpoints.

Summary
The systematic extension of the TRACE32 concept
enables Lauterbach to offer its customers simple
debugging of embedded designs that use an SMP
operating system for controlling several cores or
hardware threads. To be able to use this new con-
cept for debugging SMP operating systems, you
just need a TRACE32 debugger whose debug ca-
ble has not only a license for the processor archi-
tecture but also a second license such as a multi-
core license.

Following the support for the MIPS 34K, the de-
bugging of SMP systems for ARM and PowerPC
architectures is also planned for early 2008.

Fig. 5: The TASK.DTASK window, showing the core or hardware
thread to which SMP Linux has assigned a task/process

Fig. 6: The TRACE32 window, which always shows only the con-
text of a core or hardware thread. The number of the core
or hardware thread is shown in the status line.

