

1

Embedded Systems - Optimizing Energy
Consumption in ARM® CortexTM-M-based
Low Power Applications with µTrace

Everyone is aware of them - embedded systems in
cars, telephones, and a wide range of electronic
devices that influence and change everyday life and
human behavior. Many of these devices contain small
computers. In addition to functionality and computing
power, low energy consumption is frequently a key
factor in determining the market success of a product,
especially for mobile and battery-operated systems.
Also power supply and high temperatures put a strain
on semi-conductor components and accelerate the
ageing process; therefore, it is particularly important
for systems in temperature-critical environments to
reduce power loss and related heat generation.
Slowing down the ageing process extends the service
life and increases the quality of the end products.

Modern semi-conductors are often designed with
intelligent power supply concepts, enabling you to
independently control the power supply to applications.
You can vary the frequency, switch off unused
modules, and place the entire chip in hibernation by
using power down modes. The main task of the
software is to effectively implement these concepts,
and as a result, reduce energy consumption.

Electrical energy is a product of three parameters;
current, voltage and time. These are determined by
many factors in the design. With the right tools to
monitor the system the designer can understand the
causes of changes in voltage and current.

This can only be successful if the power consumption
values can be dynamically compared with the actual
operation of the system software and hardware. Using
this correlation you can take corrective action to
reduce excessive power consumption by the
optimization of software and hardware resources.
This used to be a difficult task but has become much
easier with the new generation of TRACE32
debuggers as they have the correct interfaces to
monitor and record both the software at run time and
the power consumption of areas of interest. This data
is recoded in the internal storage of the tools for
analysis by the developer.

Energy profiling describes the method of gathering
current and voltage values with the debuggers from
Lauterbach and analyzing and displaying the results
using the graphical user interface (GUI) PowerView.

Energy Profiling with µTrace

The µTrace is Lauterbach's newest product, which
integrates debugging and trace functions into one
device. Optimized for ARM

®
 Cortex™-M processors,

the µTrace supports a wide variety of derivatives from
different manufacturers.

Figure 1 shows the measurements for energy profiling
with the µTrace. In this example, the debugger is
connected to the target using 2 cables and to the host
computer with a USB 3.0 interface. The 20-pin debug
cable connects to 2 combined interfaces on the
processor debug port. Debugging commands are sent
using JTAG/cJTAG/SWD to control the program flow
and access the system resources. The processor
internal trace module (4 bit ETM) is also configured by
this interface and when in operation outputs details of
the program flow and data to the tools for storage and
analysis. An analog probe from Lauterbach uses a
second cable to read the current and voltage
measurements.

Figure 1: Energy profiling with µTrace

2

There are 4 channels for measuring voltage and 3
channels for measuring current. A low resistance shunt
resistor in the supply line to any section of the system
that is of interest is necessary to allow recording of the
current values.

With a measurement of the supply voltage and a
simultaneous measurement of the voltage drop across
the shunt resistor the instantaneous power
consumption can easily be calculated.

The µTrace has an internal capacity of 256 MB for
storing trace data measurements, as well as current
and voltage values. This can be expanded by
streaming the trace data during run time via the tools
to a hard drive on the host computer.

PowerView is the user interface that provides all the
control and configuration functions for configuring the
tools both for debugging and power data collection and
analysis. The settings can be configured graphically
using the respective dialog boxes or by using
commands. For complex settings all configurations can
be saved into a script file so they can easily be
repeated

Energy profiling only requires a few settings. The
settings for the debug and trace interfaces of the
processor must be configured together with those of
the debugger and the analog probe.

As a prerequisite you must have a functioning debug
channel so the µTrace and the processor can
communicate with each other over the same
JTAG/cJTAG/SWD interface.

In the second step, the trace functions are configured.
With ARM

®
 Cortex

TM
-M, the trace data to be collected

and the port width are defined by the combined
settings of the Embedded Trace Macrocell (ETM),
Instrumentation Trace Macrocell (ITM), and Trace Port
Interface Unit (TPIU). By configuring macros you can
display program trace and data trace, including time
stamps. For a limited trace port width (maximum 4bit
with this processor architecture), you should choose
settings for the content and the amount of trace data
being generated to fit within the available bandwidth
and at the same time remember the program trace
should be as detailed as possible to provide the most
accurate correlation.

Data collection with the analog probe, as shown in
figure 2, is configured using a separate menu in which
the current and voltage channels are activated and the
values of the shunt resistors are entered. You can
optimize the use of available data storage for each
channel with dedicated trigger settings. You can also
activate three power channels whose values come

Figure 2: Configuration of the analog probe

from the calculation made on the associated current
and voltage channels.

To simplify demands on the measurement system for a
power channel, the voltage can be assumed to be
constant; however, this reduces the accuracy of
performance calculations. When set up the debugger
will record trace and power values on execution of the
application or from defined trigger conditions.

PowerView - Correlation of Measurements
and Evaluation of Results

While the current and voltage measurements are being
read at regular intervals, the trace data is transmitted
by the core in compressed packets with a time stamp
from the target. After uncompressing the trace data,
both series of measurements are converted to a
common time axis with the help of the internal µTrace
system clock and each power measurement is
assigned a time stamp. Both the power and trace files
can now be correlated to the high level language
source files.

The power measurements can now be presented with
the high level language in either list or graphical
formats. Figure 3 shows the results of a measurement
where the use of external storage causing a peak in
the energy consumption is being investigated. In this
example, while an application loop is performed
multiple times and the cache is repeatedly activated
and deactivated, the power supply for the memory
interface and the core is being measured.

3

The upper window in figure 3 shows the run time as
the nested functions are called. This shows how the
cache being activated makes accesses quicker. The
middle diagram shows current flow to the external
storage interface.

The higher current values are a result of the external
storage being accessed during the second run at the
point when the cache is deactivated and before the
third run at the point when the cache is reloaded. The
use of the cache is also apparent in the power supply
to the core, whose timeline is visible in the bottom
window. All the windows are synchronized so that
changing the time period in one all will update all of the
others. It is therefore easy to track individual power
measurement to the code running at that time.

Further information can be calculated from the
measurements, or statistically deduced and presented
including the calculation of minimum and maximum
values and power consumption by function. Finally, all
of the recorded data can be saved in files and then
reloaded and analyzed offline within the TRACE32
simulator.

Figure 3: Presentation of results with PowerView

The µTrace, analog probe, and PowerView create a
compact system for determining consumption that can
be managed and operated by any developer. However,
as with any system there are some technical
limitations. Depending on the time stamp provided by
the core in the trace macro, the accuracy of the
correlation between the measured values and the
trace data can be limited. This does not cause
problems when assigning values at the function level;
however, assigning values on the command level is
not practical. Due the design of command pipeline and
multicore architectures several commands can be
processed at the same time so a power consumption
value cannot be assigned to an individual command.
Also activating the trace functionality also causes an
increase in power consumption which can lead to
recording a false value if you are undertaking a high
grade optimization.

Energy profiling with the µTrace is an extremely
effective method for power optimization that can be
easily implemented into the development program
helping with the program and compiler optimization
and chip commissioning.
The µTrace is supplied as a system with software,
debug cable, power supply and USB cables. The
analog probe and a range of adaptors are also
available as accessories.

Lauterbach GmbH

Altlaufstrasse 40
85635 Hoehenkirchen, Germany

Phone: +49 8102 9876-0
Fax +49 8102 9876-187

info@lauterbach.com

September 2013

