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Introduction 
 
The widespread use of eMMC storage in many of today’s applications raises the issue of prem-
ature device degradation or wear-out resulting from intensive memory usage. To study this 
possible problem, it is necessary to record the accesses to an eMMC device in order to obtain 
the required information that can be subsequently analysed to improve stability and reliability 
over the device’s expected lifespan. From this kind of analysis, it’s possible to understand how 
your software application actually accesses a filesystem mounted on an eMMC and if this can 
cause premature aging of the NAND-based memory device. 
 
 
SD cards, eMMC and UFS memory chips are 
managed-NAND block devices, consisting of 
a NAND controller, an internal firmware per-
forming ECC operations, wear-levelling and 
bad-block management of the raw NAND 
memory. 
 

The specific architecture of a managed-
NAND device can be extremely sensitive to 
certain read and write access sequences 
performed by the host processor under the 
direction of the application software, espe-
cially if these are frequently iterated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A classic recording method (log) of these ac-
cesses requires the implementation of addi-
tional code that captures information and 
saves it securely. The information can be 
saved on another permanent storage de-
vice, for example an external USB drive. This 
software method is intrusive and in addition 
to the overhead of monitoring the eMMC 
access, additional overhead is added in or-
der to save the data. 
 
This study proposes a different method of 
capturing and saving such information 
through the use of a hardware-based trace 
tool. This can be done with minimal intru-
sion on the software and, in some cases, al-
most zero. This tool captures the program 
and data trace transmitted by the cores of 
an SoC through a dedicated trace port, and 
records it to its own dedicated memory. 
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Arm CoreSight™ 
Many embedded microprocessors and microcontrollers are able to trace information related 
to the program execution flow. This allows the sequence of instructions executed by the pro-
gram to be reconstructed and examined in great detail. In some configurations it is also possible 
to record the data related to the read and/or write cycles performed by the program. 
 
CoreSight™ is the name of the on-chip debug 
and trace technology provided by Arm®. 
CoreSight™ is not intended as a default logic 
block but, like a construction kit, it provides 
many different components. This allows the 
SoC designer to define the debug and trace 
resources that they want to provide. Pro-
gram flow (and sometimes data flow) infor-
mation is output through a resource called 

ETM (Embedded Trace Macrocell). The ETM 
trace information flow can be stored inter-
nally (on-chip trace) or can be exported out-
side of the SoC (off-chip trace). Arm® pro-
vides several ways for exporting a trace flow: 
through a parallel trace port (TPIU, Trace 
Port Interface Unit), or serial trace port 
(HSSTP, High-Speed Serial Trace Port) or 
through a PCIe interface.

 
When data trace is not available, Arm® provides the Context ID register. This is often used by 
an Operating System (OS) to indicate that a task switch has occurred. This is done by code in 
the OS kernel writing the task identifier to this register. In a multicore Arm®/Cortex® SoC, each 
core implements this register. 
 

Lauterbach TRACE32 development tools 
Lauterbach's TRACE32 development tools enable hardware-based debug and trace of a wide 
range of embedded microprocessors and microcontrollers and support debug technologies 
such as JTAG or SWD, as well as trace technologies such as NEXUS or ETM. 
 
The TRACE32 tools support 
all Arm® CoreSight™  
configurations. A TRACE32 
development tool for debug 
and trace is typically  
comprised of these units: 
 
 
 

 a universal PowerDebug module connected to the host 
computer via USB3 or Ethernet; 

 a debugger (debug cable) for the specific architecture of 
the microprocessor or microcontroller under debug; 

 for the off-chip trace, a universal PowerTrace II or Power-
Trace III module providing 4GB or 8GB memory, comple-
mented by a parallel or serial pre-processor to access the 
trace data; 

 or a dedicated PowerTrace Serial module for serial or PCIe 
trace data. 

TRACE32-based eMMC access log solution 
In all operating systems or device drivers that manage an eMMC memory device, some func-
tions are provided for device access which incorporate the eMMC JEDEC standard commands. 
Long-term monitoring of the execution of these commands and their parameters is the best 
way to collect the data necessary for the access analysis. After accessing the eMMC device, a 
function or a code point is usually available where the eMMC command is completed. Moni-
toring this code point allows the detection of additional information, such as the execution time 
of the command. 
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The TRACE32 trace tool can sample the code points where eMMC accesses start and finish. By 
adding a tiny amount of instrumentation to your source code, you can also trace device access 
data. In cases where data trace is not available, the instrumentation code writes the access 
data to the ContextID register, allowing both types of system to be adapted to use this tech-
nique. 
 
The following data is traced in the TRACE32-based log solution: 

 at the beginning of eMMC access: eMMC device id, command executed and related flags, 
access address, number of accessed memory blocks and their size; 

 at the end of the eMMC access: eMMC device id, command executed, result code and other 
return codes; 

 access duration. 
 
A possible example of access monitoring is shown below, as it appears in the trace views avail-
able in TRACE32: 
 
 

 

 2| ptrace  \\vmlinux\core_core\mmc_start_request  24.228827980s 
 2| info                                           24.228828005s     31636D6D 
 2| info                                           24.228828030s     00000019 
 2| info                                           24.228828055s     01620910 
 2| info                                           24.228828080s     000000B5 
 2| info                                           24.228828105s     00000200 
 2| info                                           24.228828130s     00000010 

 
 0| ptrace  \\vmlinux\core_core\mmc_request_done   24.231239610s 
 0| info                                           24.231241385s     31636D6D 
 0| info                                           24.231241410s     00000019 
 0| info                                           24.231241435s     00000000 
 0| info                                           24.231308085s     00000900 
 0| info                                           24.231308210s     00000000 

 
  
 
This is, typically, a few trace records for each eMMC access. Stress tests have verified that log-
ging an eMMC access (functions mmc_start_request() and mmc_request_done() with re-
lated data) requires about 416 trace records in the PowerTrace memory and these accesses 
occur on average every 4 mSec. 
 
This corresponds to approximately 1GB/416 
= 2.5 million eMMC logs, or approximately 
10,000 seconds (2h45min) for each gigabyte 
of trace storage. The PowerTrace family pro-
vides either 10 million eMMC logs (11h) for 
a 4GB PowerTrace or 20 million (22h) for an 
8GB module. 
By extending the trace duration with trace 
streaming, the limit becomes the size of the  

 
computer hard-disk/SSD or the TRACE32 
limit which is 1 Tera-frame, i.e., 2.5 billion 
eMMC logs (over 100 days!). 
 
The trace data can be filtered and saved on 
disk, and then converted into a more suita-
ble format for analysis using a TRACE32 
script (PRACTICE script), Python script or an 
external conversion program. 
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For example, the trace shown above can be converted into the format shown below, which is 
more suitable for importing into specific eMMC analysis tools: 
 
 

 
24.228827980 mmc_start_req_cmd: host=mmc1 CMD25 arg=01620910 flags=000000B5 
blksz=00000200 blks=00000010 
24.231239610 mmc_request_done: host=mmc1 CMD25 err=00000000 resp1=00000900 
resp2=00000000 

 
 
These tools perform a complete analysis of the eMMC device application accesses, in terms of 
addresses accessed, frequency and access methods.  
 
The end-goal is calculating the Write Amplification (WA) seen by the eMMC (or by any other 
managed-NAND block device). Write Amplification (WA) is defined as the ratio of NAND physi-
cal writes and the host induced writes (WA = NAND writes / Host Writes).  
 
When the host writes logical sectors of the eMMC, the internal MMC controller erases and re-
programs physical pages of the NAND device. This could cause a management overhead. Large 
sequential writes aligned to physical page boundaries typically result in minimal overhead and 
optimal NAND write activity (WA=~1). Small-chunks of random writes could result in a higher 
overhead (WA>>1). 
 
This becomes important when considering the life of the raw-NAND memory inside the eMMC, 
which has a finite number of Program/Erase cycles. See the example below: 
 

 
 
 
To estimate the WA for any particular eMMC device, and hence its expected lifetime on your 
application, you can capture the log file of the activity. 
 
Once a log is obtained, it’s recommended to contact your eMMC vendor to get more infor-
mation about the log analysis tools required for analysing the specific eMMC product.  
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Implementation example for Linux OS 
Below is an example of how the TRACE32-based log method can be applied to a Linux system. 
The solution is based on light instrumentation of the mmc_start_request() and mmc_re-
quest_done() functions defined in the Linux “drivers/mmc/core/core.c” source code 
file. Relevant eMMC device accesses are captured through the instrumentation code and they 
are written to a static data structure making them immediately traceable if data trace is avail-
able in the SoC. If data trace is not possible, the instrumentation code writes the data to the 
Arm®/Cortex® Context ID register. 
 
The solution was successfully tested on the DAVE Embedded Systems “MITO 8M Evaluation Kit” 
(see https://www.dave.eu/en/solutions/system-on-modules/mito-8m). The kit consists of 
three boards: SoM, SBCX carrier board, adapter board. This setup provides off-chip trace via a 
parallel trace port or a PCIe interface. The SoM is equipped with the NXP i.MX8M processor 
based on the Quad Core Arm® Cortex-A53 CPU. The Linux kernel version used is 4.14.98. 
 
The instrumentation code is provided in Appendix 1. The zero initialization of the T32_mmc 
structure is guaranteed by Linux, since this variable is allocated in the bss section. The instru-
mentation is normally disabled but can be enabled by writing the value "1" in the enable field 
of the T32_mmc structure. The identifier of the eMMC device to be traced must be written in 
the dev field. Both of these operations can be performed from a TRACE32 script with the fol-
lowing commands: 
 

 
Var.set T32_mmc.enable = 1 
Var.set T32_mmc.dev = 0x30636D6D   // e.g.: "mmc0" in reverse ASCII order 

 
The infoBit field can be written as follows: 

 
Var.set T32_mmc.infoBit = 0x80000000 

 
 

This allows the user and the tools to distinguish between data written in the Context ID register 
by the instrumentation code from those written by Linux for task switches. In this case, the 
range of values must also be reserved so that they are not interpreted as task switch identifiers. 
The command to do this is shown below: 
 
 

ETM.ReserveContextID 0x80000000--0xffffffff 

 
 
It’s important to note that the Linux kernel 
must be compiled for debug (see the Train-
ing Linux Debugging manual at 
https://www.lauterbach.com/manual.html). 
The TRACE32 debugger also offers exten-
sions for many different operating systems, 
known as an “OS awareness”. These add OS 
specific features to the TRACE32 debugger 
such as the display of OS resources (tasks, 

queues, semaphores, ...) or support for 
MMU management in the OS. In TRACE32, 
the ability to trace tasks and executed code 
is based on task switch information in the 
trace flow. The command ETM.Reserve-
ContextID allows simultaneous use of the 
Linux OS awareness support and the instru-
mentation for eMMC access analysis. 



WHITE PAPER 

page 7 

 
 

 
To reduce the amount of trace information generated by the target and to allow long-term 
trace via streaming, filters can be applied to isolate just the instrumentation code and its writes 
to the Context ID register. For example: 
 

 

Break.REset 
Break.Set  mmc_request_done     /Program /TraceON 
Break.Set  mmc_request_done\94  /Program /TraceOFF 
Break.Set  mmc_start_request    /Program /TraceON 
Break.Set  mmc_start_request\38 /Program /TraceOFF 

 
 
where the filters marked as /TraceOFF are mapped to program addresses immediately after 
the instrumentation.  
 
To ensure the task switch data generated by the OS is included in the filtered trace flow, add 
an additional filter to the __switch_to() function (arch/arm64/kernel/process.c) 
where it calls the static inline contextidr_thread_switch() function: 
 

 

Break.Set     __switch_to+0x74 /Program /TraceON 
Break.Set     __switch_to+0x80 /Program /TraceOFF 

 
 
The trace flow recorded by TRACE32 can be arranged into a view suitable for exporting by post-
processing with the command: 
 

 

Trace.FindAll , Address address.offset(mmc_start_request) OR Address 
address.offset(mmc_request_done) OR Cycle info OR Cycle task /List run cycle 
symbol %TimeFixed TIme.Zero data 

 
 

NOTE: ‘OR Cycle task’ is optional. 
 

Comparison with the software method ftrace 
In Linux, eMMC access log solutions based 
on purely software methods are already 
available. The ftrace framework provides 
this capability, as well as being able to log 
many other events. The term “ftrace” stands 
for “function tracer” and basically allows you 
to examine and record the execution flow of 
kernel functions. The dynamic tracing mode 
of ftrace is implemented through dynamic 
probes injected into the code, which allow 

runtime definition of the code to be traced. 
When tracing is enabled, all the collected 
data is stored by ftrace in a circular memory 
buffer. In the framework there is a virtual 
filesystem called tracefs (usually 
mounted in /sys/kernel/tracing) which 
is used to configure ftrace and collect the 
trace data. All management is done with 
simple operations on the files in this direc-
tory. 

 
Comparative tests performed on the DAVE Embedded Systems “MITO 8M Evaluation Kit” target 
showed that the ftrace impact compared to the TRACE32-based log solution is considerably 
higher in several respects. This is understandable, considering that ftrace is a general-purpose 
trace framework designed to trace many possible events, while the instrumentation required 
for the TRACE32 log method is specific and limited to the pertinent functions. Moreover, ftrace 
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requires some buffering (ring buffer) and saving data to a permanent memory, while the solu-
tion based on TRACE32 uses off-chip trace to save the data externally in real time. The following 
tables show a comparison between ftrace and the TRACE32 solution. 
 
Table 1: instrumentation size 
 

 vmlinux code 
size 

vmlinux data vmlinux 
source files 

instrumentation 
code size (*) 

instrumentation 
data size (*) 

Clean 12,79MB 10,78MB 4640   
TRACE32 12,79MB (+0%) 10,78MB 

(+0%) 
+0 (41 source 
code lines in 
mmc driver) 

+372 byte +64 byte 

ftrace 14,78MB 
(+15,6%) 

11,77MB 
(+9%) 

+836 (+18%) +1,99MB +0,99MB + 
??MB ring 
buffer (**) 

 

(*) ftrace instrumentation applies to the whole Linux kernel. TRACE32 instrumentation applies to the functions 
mmc_start_request() and mmc_request_done() only. 

(**) the actual size of the ftrace ring buffer can be configured during runtime but is typically between 10—
100MB. 

 
In the ftrace-based solution, an increase in 
kernel size of approximately 15% (code) and 
9% (data) is observed compared to the ker-
nel without ftrace. During the execution of 
ftrace it’s also necessary to reserve addi-
tional memory for the ring buffer. The 

number of source files used in building the 
kernel increases by 18% when the ftrace 
framework is included. The weight of the in-
strumentation required by TRACE32, on the 
other hand, is practically negligible both in 
terms of code and data. 

 
Table 2: instrumentation time intrusion 
 

Average duration at 
measuring points (*) 

No ftrace 
No TRACE32 instr. 

No ftrace 
With TRACE32 instr. 

With ftrace 
No TRACE32 instr. 

mmc_start_request 6.950us 8.108us (+1.158us) 36.875us 

mmc_request_done 0.770us 1.364us (+0.594us) 63.031us 
 

(*) measuring points are the part of functions where the instrumentation is added. 

 
The functions average duration analysis of eMMC accesses highlights the greater weight re-
quired by ftrace. The tests were performed under the following conditions. 
 
Test scenario: R/W access to mmc0 with command: 
 
 

stressapptest -s 20 -f /mnt/mmc0/file1 -f /mnt/mmc0/file2   ; duration = 20s 

 
 
Results in /mnt/mmc0 (16MB) 
 

 

-rw-r--r-- 1 root root 8388608 Dec  3 16:30 file1 
-rw-r--r-- 1 root root 8388608 Dec  3 16:30 file2 
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Setup for ftrace 
 

echo 1 > /sys/kernel/debug/tracing/tracing_on 
echo 1 > /sys/kernel/debug/tracing/events/mmc/enable 
echo 20000 > /sys/kernel/debug/tracing/buffer_size_kb     ; 20MB buffer size 
echo > /sys/kernel/debug/tracing/trace 
cat /sys/kernel/debug/tracing/trace_pipe > /home/root/prove/ftrace.txt 

 
Please note that the ftrace pipe is saved to a file on a different memory device (mmc1). 
 
Additional, more detailed charts are provided in Appendix 2, which show that using ftrace also 
involves a greater dispersion of the runtime durations compared to both the kernel without 
ftrace and the kernel instrumented only with the code for TRACE32. In particular, the functions 
mmc_start_request() and mmc_request_done() have a few uS constant execution time 
without ftrace, and show a very variable execution time with ftrace, with a maximum time up 
to 279uS and 285uS respectively. 

Conclusion 
The HW method based on TRACE32 provides 
the same log data as recorded by ftrace but 
with minimal changes to the kernel (a few 
lines in a file) and a tiny time penalty. It also 
does not use any additional  memory (ram 

and file system) and allows for extremely 
long measurement times. 
The following Table 3 summarizes the ad-
vantages and disadvantages of the two con-
sidered solutions: TRACE32 vs ftrace. 

 
Table 3: PROS and CONS 
 

  

   PROS 
 

 

   CONS 

 
 
 
TRACE32 

 

- light kernel instrumentation; 
- no additional memory  

required; 
- long-term analysis (few hours 

up to over 100 days); 
- can be ported to other OS / 

eMMC device drivers. 
 

 

- HW-based solution: requires a debug and trace 
tool + offchip-trace capable processor and tar-
get 

 
 
 
 
ftrace 

 

- SW-based solution 
 

 

- available for Linux kernel only; 
- heavy kernel instrumentation; 
- time intrusion in eMMC operation; 
- kernel program and data size increase; 
- 10—100 MB of ram required for ring buffer; 
- additional storage device to save the ring 

buffer; 
- for each eMMC operation ftrace saves roughly 

876 byte of log information. 
 

 
Please contact your eMMC vendor to obtain more information on how TRACE32 logs can be 
used to calculate your application lifespan. This is a very important milestone to improve the 
storage performance stability of your platform and for making sure the expected reliability re-
quirements are met. 
 



WHITE PAPER 

page 10 

 
 

References 
 
Design Considerations for Embedded Products, Western Digital Corporation, 2018 
https://link.westerndigital.com/content/dam/customer-
portal/en_us/external/public/cps/p/White_Paper_Design_Considerations_v1.0.pdf 
 
Automotive Workload Analysis, Western Digital Corporartion, September 2021 
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-
digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf 
 

Appendix 1: source code example 
 

static struct T32_mmc_struct { 
 unsigned int   enable; 
 unsigned int   infoBit; 
 unsigned int   dev; 
 unsigned int * pHost; 
 unsigned int   cmd; 
 unsigned int   arg; 
 unsigned int   flags; 
 unsigned int   blksz; 
 unsigned int   blocks; 
 unsigned int   err; 
 unsigned int   resp0; 
 unsigned int   resp1; 
 unsigned int   resp2; 
 unsigned int   resp3; 
} T32_mmc; 
 
int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 
{ 
 int err; 
 

 mmc_retune_hold(host); 
 

 if (mmc_card_removed(host->card)) 
  return -ENOMEDIUM; 
 

 mmc_mrq_pr_debug(host, mrq, false); 
 

 WARN_ON(!host->claimed); 
 

 if (T32_mmc.enable) { 
  T32_mmc.pHost = (unsigned int *)mmc_hostname(host); 
  if ((*T32_mmc.pHost)==T32_mmc.dev) { 
   if (mrq->cmd) { 
    write_sysreg((*T32_mmc.pHost)|T32_mmc.infoBit,   
        contextidr_el1); 
    isb(); 
    T32_mmc.cmd = (mrq->cmd->opcode)|T32_mmc.infoBit; 
    write_sysreg(T32_mmc.cmd, contextidr_el1); 
    isb(); 
    T32_mmc.arg = (mrq->cmd->arg)|T32_mmc.infoBit; 
    write_sysreg(T32_mmc.arg, contextidr_el1); 
    isb(); 
    T32_mmc.flags = (mrq->cmd->flags)|T32_mmc.infoBit; 
    write_sysreg(T32_mmc.flags, contextidr_el1); 
    isb(); 
   } 
 
   if (mrq->data) { 
    T32_mmc.blksz = (mrq->data->blksz)|T32_mmc.infoBit; 
    write_sysreg(T32_mmc.blksz, contextidr_el1); 
    isb(); 
    T32_mmc.blocks = (mrq->data->blocks)|T32_mmc.infoBit; 
    write_sysreg(T32_mmc.blocks, contextidr_el1); 
    isb(); 
   } 
  } 
 } 
 err = mmc_mrq_prep(host, mrq); 
 if (err) 
  return err; 
... 

https://link.westerndigital.com/content/dam/customer-portal/en_us/external/public/cps/p/White_Paper_Design_Considerations_v1.0.pdf
https://link.westerndigital.com/content/dam/customer-portal/en_us/external/public/cps/p/White_Paper_Design_Considerations_v1.0.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf
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void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 
{ 
 struct mmc_command *cmd = mrq->cmd; 
 int err = cmd->error; 
... 
 
... 
 
 if (!err || !cmd->retries || mmc_card_removed(host->card)) { 
  mmc_should_fail_request(host, mrq); 
 
  if (!host->ongoing_mrq) 
   led_trigger_event(host->led, LED_OFF); 
 
  if (mrq->sbc) { 
   pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 
    mmc_hostname(host), mrq->sbc->opcode, 
    mrq->sbc->error, 
    mrq->sbc->resp[0], mrq->sbc->resp[1], 
    mrq->sbc->resp[2], mrq->sbc->resp[3]); 
  } 
 
  pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 
   mmc_hostname(host), cmd->opcode, err, 
   cmd->resp[0], cmd->resp[1], 
   cmd->resp[2], cmd->resp[3]); 
 
  if (mrq->data) { 
   pr_debug("%s:     %d bytes transferred: %d\n", 
    mmc_hostname(host), 
    mrq->data->bytes_xfered, mrq->data->error); 
  } 
 
  if (mrq->stop) { 
   pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n", 
    mmc_hostname(host), mrq->stop->opcode, 
    mrq->stop->error, 
    mrq->stop->resp[0], mrq->stop->resp[1], 
    mrq->stop->resp[2], mrq->stop->resp[3]); 
  } 
 
  if (T32_mmc.enable) { 
   T32_mmc.pHost = (unsigned int *)mmc_hostname(host); 
   if ((*T32_mmc.pHost)==T32_mmc.dev) { 
    write_sysreg((*T32_mmc.pHost)|T32_mmc.infoBit, 
        contextidr_el1); 
    isb(); 
    T32_mmc.cmd = (cmd->opcode)|T32_mmc.infoBit; 
    write_sysreg(T32_mmc.cmd, contextidr_el1); 
    isb(); 
    T32_mmc.err = (err)|T32_mmc.infoBit; 
    write_sysreg(T32_mmc.err, contextidr_el1); 
    isb(); 
    T32_mmc.resp0 = (cmd->resp[0])|T32_mmc.infoBit; 
    write_sysreg(T32_mmc.resp0, contextidr_el1); 
    isb(); 
   } 
  } 
 } 
 /* 
  * Request starter must handle retries - see 
  * mmc_wait_for_req_done(). 
  */ 
 if (mrq->done) 
  mrq->done(mrq); 
} 
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Appendix 2: time details 
 

1) time duration analysis: mmc_start_request 
 

1.1) No ftrace, no TRACE32 instrumentation 
 

 
 
 
 

1.2) No ftrace, with TRACE32 instrumentation 
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1.3) With ftrace, no TRACE32 instrumentation 

 

 
 
 
 
 

2) time duration analysis: mmc_request_done 
 

2.1) No ftrace, no TRACE32 instrumentation 
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2.2) No ftrace, with TRACE32 instrumentation 
 

 
 
 
 
 
 
 

2.3) With ftrace, no TRACE32 instrumentation 
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Appendix 3: TRACE32 tools configuration for Arm Cortex-A/R architectures 
 
This appendix describes the TRACE32 Arm 
trace tools needed to perform the eMMC ac-
cess analysis.  
Chips based on Armv7/Armv8/Armv9 Cortex 
A/R cores typically include Arm Coresight de-
bug & trace logic. In order to increase the 
trace recording time, the trace flow pro-
duced by the Arm ETM/PTM trace logic is 
sent off-chip via a dedicated trace port. 
Typical trace ports are TPIU (parallel) and 
HSSTP (serial). Additionally, on some chips 
the trace flow can be transferred outside via 

PCIe bus, or even stored to an external DDR 
memory. This last method can be quite in-
trusive and limits the duration of the meas-
urement because it depends on how much 
of the target RAM is free (not used by the 
application) and therefore available for trace 
storage. 
Our recommendation is to use a trace port 
to transmit the trace off-chip in real time, 
without causing intrusion and without limit-
ing the duration of the measurement. 

 
Lauterbach offers various PowerTrace models, with different amounts of trace storage and 
different trace probes. Here an overview: 
https://www.lauterbach.com/powertrace_overview.html 
 
Chips based on Arm cores can have different trace ports, in particular: 
 
For chips with "parallel" trace port (TPIU), a PowerTrace-II or, better yet, PowerTrace-III sys-
tem is recommended, plus an Arm AutoFocus II pre-processor with Mictor38 connector. 
 
 
PowerTrace-III system for Armv7 Cortex-A/R with “parallel” trace port, eg. i.MX6 Quad 
 

  

 
LA-3505 PowerDebug PRO Ethernet 
LA-2520 PowerTrace III 8 GigaByte 
LA-7843 Debugger for Cortex-A/R (ARMv7 32-bit) 
LA-7992 Preproc. for ARM-ETM/AUTOFOCUS II 600 Flex 
https://www.lauterbach.com/pro/pro_imx6quad_alt03.php 
 
Mictor38 connector p/n and pinout: 
https://www.lauterbach.com/adetmmictor.html 
 

 
 
PowerTrace-III system for Armv8 Cortex-A/R with “parallel” trace port, eg. some i.MX8M 
 

  

 
LA-3505 PowerDebug PRO Ethernet 
LA-2520 PowerTrace III 8 GigaByte 
LA-3743 Debugger for Cortex-A/R (Armv8 and Armv9) 
LA-7992 Preproc. for ARM-ETM/AUTOFOCUS II 600 Flex 
https://www.lauterbach.com/pro/pro_cortex-a53_alt03.php 
 
Mictor38 connector p/n and pinout: 
https://www.lauterbach.com/adetmmictor.html 

 

https://www.lauterbach.com/powertrace_overview.html
https://www.lauterbach.com/pro/pro_imx6quad_alt03.php?chip=IMX6QUAD
https://www.lauterbach.com/adetmmictor.html
https://www.lauterbach.com/pro/pro_cortex-a53_alt03.php
https://www.lauterbach.com/adetmmictor.html


WHITE PAPER 

page 16 

 
 

For chips with “serial” trace port (HSSTP), either a PowerTrace-II or PowerTrace-III  
with Serial Preprocessor, or a PowerTrace Serial can be used.  
 
PowerTrace-III system for Armv8 Cortex-A/R with “serial” trace port, eg. i.MX8 Dual x Plus 
 

  

 
LA-3505 PowerDebug PRO Ethernet 
LA-7694 PowerTrace II 4 GigaByte 
LA-3743 Debugger for Cortex-A/R (Armv8 and Armv9) 
LA-7988 Preproc. for ARM-ETM/HSSTP HF-Flex 
https://www.lauterbach.com/pro/pro_imx8dualxplus_alt03.php 
 
Samtec40 connector p/n and pinout: 
https://www.lauterbach.com/adetmhsstp.html 
 

 
PowerTrace Serial system for Armv8 Cortex-A/R with “serial” trace port, eg. i.MX8 Dual x Plus 
 
 

 
 

 
LA-3505 PowerDebug PRO Ethernet 
LA-3743 Debugger for Cortex-A/R (Armv8 and Armv9) 
LA-3520 PowerTrace Serial 4 GigaByte for ARM-ETM 
LA-3521 Accessories for PTSerial for ARM-ETM 1-6Lanes 
https://www.lauterbach.com/pro/pro_imx8dualxplus_alt04.php 
 
Samtec40 connector p/n and pinout: 
https://www.lauterbach.com/adetmhsstp.html 
 

 
Some chips which provide sufficient PCIe lanes have the ability to transmit the trace out through the 
PCIe bus. In this case a PowerTrace Serial system with a particular adapter for PCIe is required. This 
method can be used as an alternative to the classical “parallel” or “serial” trace ports from Arm. 
 
PowerTrace Serial system for Armv8 Cortex-A/R with PCIe trace, eg. i.MX8M Mini Quad 
 

 

 
LA-3505 PowerDebug PRO Ethernet 
LA-3743 Debugger for Cortex-A/R (Armv8 and Armv9) 
LA-3520 PowerTrace Serial 4 GigaByte for ARM-ETM 
LA-3550X License for PCI Express 
LA-3522 Accessories for PTSerial for ARM-ETM 7-8Lanes 
https://www.lauterbach.com/pro/pro_imx8mminiquad_alt03.php 
 
PCIe connectors and adapters: 
https://www.lauterbach.com/adpts_pcie.html 
 

 
 
For further technical and commercial information, please contact the Lauterbach office for  
your area: 
https://www.lauterbach.com/worldwide_rep.html 
https://www.lauterbach.com 

https://www.lauterbach.com/pro/pro_imx8dualxplus_alt03.php
https://www.lauterbach.com/adetmhsstp.html
https://www.lauterbach.com/pro/pro_imx8dualxplus_alt04.php
https://www.lauterbach.com/adetmhsstp.html
https://www.lauterbach.com/pro/pro_imx8mminiquad_alt03.php
https://www.lauterbach.com/adpts_pcie.html
https://www.lauterbach.com/worldwide_rep.html
https://www.lauterbach.com/
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