
page 1

WHITE PAPER

TRACE32 log method for

analysing accesses to an eMMC device

Authors: Marco Ferrario, Maurizio Menegotto, Lauterbach Italy
Lauterbach S.r.l., Regus EasyPoint 1st floor, Via Caldera 21, I-20153 Milano

First edition: July 8th 2021, Revision: November 11th, 2021

Summary

Introduction ... 2

Arm CoreSight™ .. 3

Lauterbach TRACE32 development tools .. 3

TRACE32-based eMMC access log solution .. 3

Implementation example for Linux OS .. 6

Comparison with the software method ftrace ... 7

Conclusion ... 9

References ... 10

Appendix 1: source code example .. 10

Appendix 2: time details .. 12

Appendix 3: TRACE32 tools configuration for Arm Cortex-A/R architectures 15

WHITE PAPER

page 2

Introduction

The widespread use of eMMC storage in many of today’s applications raises the issue of prem-
ature device degradation or wear-out resulting from intensive memory usage. To study this
possible problem, it is necessary to record the accesses to an eMMC device in order to obtain
the required information that can be subsequently analysed to improve stability and reliability
over the device’s expected lifespan. From this kind of analysis, it’s possible to understand how
your software application actually accesses a filesystem mounted on an eMMC and if this can
cause premature aging of the NAND-based memory device.

SD cards, eMMC and UFS memory chips are
managed-NAND block devices, consisting of
a NAND controller, an internal firmware per-
forming ECC operations, wear-levelling and
bad-block management of the raw NAND
memory.

The specific architecture of a managed-
NAND device can be extremely sensitive to
certain read and write access sequences
performed by the host processor under the
direction of the application software, espe-
cially if these are frequently iterated.

A classic recording method (log) of these ac-
cesses requires the implementation of addi-
tional code that captures information and
saves it securely. The information can be
saved on another permanent storage de-
vice, for example an external USB drive. This
software method is intrusive and in addition
to the overhead of monitoring the eMMC
access, additional overhead is added in or-
der to save the data.

This study proposes a different method of
capturing and saving such information
through the use of a hardware-based trace
tool. This can be done with minimal intru-
sion on the software and, in some cases, al-
most zero. This tool captures the program
and data trace transmitted by the cores of
an SoC through a dedicated trace port, and
records it to its own dedicated memory.

WHITE PAPER

page 3

Arm CoreSight™
Many embedded microprocessors and microcontrollers are able to trace information related
to the program execution flow. This allows the sequence of instructions executed by the pro-
gram to be reconstructed and examined in great detail. In some configurations it is also possible
to record the data related to the read and/or write cycles performed by the program.

CoreSight™ is the name of the on-chip debug
and trace technology provided by Arm®.
CoreSight™ is not intended as a default logic
block but, like a construction kit, it provides
many different components. This allows the
SoC designer to define the debug and trace
resources that they want to provide. Pro-
gram flow (and sometimes data flow) infor-
mation is output through a resource called

ETM (Embedded Trace Macrocell). The ETM
trace information flow can be stored inter-
nally (on-chip trace) or can be exported out-
side of the SoC (off-chip trace). Arm® pro-
vides several ways for exporting a trace flow:
through a parallel trace port (TPIU, Trace
Port Interface Unit), or serial trace port
(HSSTP, High-Speed Serial Trace Port) or
through a PCIe interface.

When data trace is not available, Arm® provides the Context ID register. This is often used by
an Operating System (OS) to indicate that a task switch has occurred. This is done by code in
the OS kernel writing the task identifier to this register. In a multicore Arm®/Cortex® SoC, each
core implements this register.

Lauterbach TRACE32 development tools
Lauterbach's TRACE32 development tools enable hardware-based debug and trace of a wide
range of embedded microprocessors and microcontrollers and support debug technologies
such as JTAG or SWD, as well as trace technologies such as NEXUS or ETM.

The TRACE32 tools support
all Arm® CoreSight™
configurations. A TRACE32
development tool for debug
and trace is typically
comprised of these units:

 a universal PowerDebug module connected to the host
computer via USB3 or Ethernet;

 a debugger (debug cable) for the specific architecture of
the microprocessor or microcontroller under debug;

 for the off-chip trace, a universal PowerTrace II or Power-
Trace III module providing 4GB or 8GB memory, comple-
mented by a parallel or serial pre-processor to access the
trace data;

 or a dedicated PowerTrace Serial module for serial or PCIe
trace data.

TRACE32-based eMMC access log solution
In all operating systems or device drivers that manage an eMMC memory device, some func-
tions are provided for device access which incorporate the eMMC JEDEC standard commands.
Long-term monitoring of the execution of these commands and their parameters is the best
way to collect the data necessary for the access analysis. After accessing the eMMC device, a
function or a code point is usually available where the eMMC command is completed. Moni-
toring this code point allows the detection of additional information, such as the execution time
of the command.

WHITE PAPER

page 4

The TRACE32 trace tool can sample the code points where eMMC accesses start and finish. By
adding a tiny amount of instrumentation to your source code, you can also trace device access
data. In cases where data trace is not available, the instrumentation code writes the access
data to the ContextID register, allowing both types of system to be adapted to use this tech-
nique.

The following data is traced in the TRACE32-based log solution:

 at the beginning of eMMC access: eMMC device id, command executed and related flags,
access address, number of accessed memory blocks and their size;

 at the end of the eMMC access: eMMC device id, command executed, result code and other
return codes;

 access duration.

A possible example of access monitoring is shown below, as it appears in the trace views avail-
able in TRACE32:

 2| ptrace \\vmlinux\core_core\mmc_start_request 24.228827980s
 2| info 24.228828005s 31636D6D
 2| info 24.228828030s 00000019
 2| info 24.228828055s 01620910
 2| info 24.228828080s 000000B5
 2| info 24.228828105s 00000200
 2| info 24.228828130s 00000010

 0| ptrace \\vmlinux\core_core\mmc_request_done 24.231239610s
 0| info 24.231241385s 31636D6D
 0| info 24.231241410s 00000019
 0| info 24.231241435s 00000000
 0| info 24.231308085s 00000900
 0| info 24.231308210s 00000000

This is, typically, a few trace records for each eMMC access. Stress tests have verified that log-
ging an eMMC access (functions mmc_start_request() and mmc_request_done() with re-
lated data) requires about 416 trace records in the PowerTrace memory and these accesses
occur on average every 4 mSec.

This corresponds to approximately 1GB/416
= 2.5 million eMMC logs, or approximately
10,000 seconds (2h45min) for each gigabyte
of trace storage. The PowerTrace family pro-
vides either 10 million eMMC logs (11h) for
a 4GB PowerTrace or 20 million (22h) for an
8GB module.
By extending the trace duration with trace
streaming, the limit becomes the size of the

computer hard-disk/SSD or the TRACE32
limit which is 1 Tera-frame, i.e., 2.5 billion
eMMC logs (over 100 days!).

The trace data can be filtered and saved on
disk, and then converted into a more suita-
ble format for analysis using a TRACE32
script (PRACTICE script), Python script or an
external conversion program.

WHITE PAPER

page 5

For example, the trace shown above can be converted into the format shown below, which is
more suitable for importing into specific eMMC analysis tools:

24.228827980 mmc_start_req_cmd: host=mmc1 CMD25 arg=01620910 flags=000000B5
blksz=00000200 blks=00000010
24.231239610 mmc_request_done: host=mmc1 CMD25 err=00000000 resp1=00000900
resp2=00000000

These tools perform a complete analysis of the eMMC device application accesses, in terms of
addresses accessed, frequency and access methods.

The end-goal is calculating the Write Amplification (WA) seen by the eMMC (or by any other
managed-NAND block device). Write Amplification (WA) is defined as the ratio of NAND physi-
cal writes and the host induced writes (WA = NAND writes / Host Writes).

When the host writes logical sectors of the eMMC, the internal MMC controller erases and re-
programs physical pages of the NAND device. This could cause a management overhead. Large
sequential writes aligned to physical page boundaries typically result in minimal overhead and
optimal NAND write activity (WA=~1). Small-chunks of random writes could result in a higher
overhead (WA>>1).

This becomes important when considering the life of the raw-NAND memory inside the eMMC,
which has a finite number of Program/Erase cycles. See the example below:

To estimate the WA for any particular eMMC device, and hence its expected lifetime on your
application, you can capture the log file of the activity.

Once a log is obtained, it’s recommended to contact your eMMC vendor to get more infor-
mation about the log analysis tools required for analysing the specific eMMC product.

WHITE PAPER

page 6

Implementation example for Linux OS
Below is an example of how the TRACE32-based log method can be applied to a Linux system.
The solution is based on light instrumentation of the mmc_start_request() and mmc_re-
quest_done() functions defined in the Linux “drivers/mmc/core/core.c” source code
file. Relevant eMMC device accesses are captured through the instrumentation code and they
are written to a static data structure making them immediately traceable if data trace is avail-
able in the SoC. If data trace is not possible, the instrumentation code writes the data to the
Arm®/Cortex® Context ID register.

The solution was successfully tested on the DAVE Embedded Systems “MITO 8M Evaluation Kit”
(see https://www.dave.eu/en/solutions/system-on-modules/mito-8m). The kit consists of
three boards: SoM, SBCX carrier board, adapter board. This setup provides off-chip trace via a
parallel trace port or a PCIe interface. The SoM is equipped with the NXP i.MX8M processor
based on the Quad Core Arm® Cortex-A53 CPU. The Linux kernel version used is 4.14.98.

The instrumentation code is provided in Appendix 1. The zero initialization of the T32_mmc
structure is guaranteed by Linux, since this variable is allocated in the bss section. The instru-
mentation is normally disabled but can be enabled by writing the value "1" in the enable field
of the T32_mmc structure. The identifier of the eMMC device to be traced must be written in
the dev field. Both of these operations can be performed from a TRACE32 script with the fol-
lowing commands:

Var.set T32_mmc.enable = 1
Var.set T32_mmc.dev = 0x30636D6D // e.g.: "mmc0" in reverse ASCII order

The infoBit field can be written as follows:

Var.set T32_mmc.infoBit = 0x80000000

This allows the user and the tools to distinguish between data written in the Context ID register
by the instrumentation code from those written by Linux for task switches. In this case, the
range of values must also be reserved so that they are not interpreted as task switch identifiers.
The command to do this is shown below:

ETM.ReserveContextID 0x80000000--0xffffffff

It’s important to note that the Linux kernel
must be compiled for debug (see the Train-
ing Linux Debugging manual at
https://www.lauterbach.com/manual.html).
The TRACE32 debugger also offers exten-
sions for many different operating systems,
known as an “OS awareness”. These add OS
specific features to the TRACE32 debugger
such as the display of OS resources (tasks,

queues, semaphores, ...) or support for
MMU management in the OS. In TRACE32,
the ability to trace tasks and executed code
is based on task switch information in the
trace flow. The command ETM.Reserve-
ContextID allows simultaneous use of the
Linux OS awareness support and the instru-
mentation for eMMC access analysis.

WHITE PAPER

page 7

To reduce the amount of trace information generated by the target and to allow long-term
trace via streaming, filters can be applied to isolate just the instrumentation code and its writes
to the Context ID register. For example:

Break.REset
Break.Set mmc_request_done /Program /TraceON
Break.Set mmc_request_done\94 /Program /TraceOFF
Break.Set mmc_start_request /Program /TraceON
Break.Set mmc_start_request\38 /Program /TraceOFF

where the filters marked as /TraceOFF are mapped to program addresses immediately after
the instrumentation.

To ensure the task switch data generated by the OS is included in the filtered trace flow, add
an additional filter to the __switch_to() function (arch/arm64/kernel/process.c)
where it calls the static inline contextidr_thread_switch() function:

Break.Set __switch_to+0x74 /Program /TraceON
Break.Set __switch_to+0x80 /Program /TraceOFF

The trace flow recorded by TRACE32 can be arranged into a view suitable for exporting by post-
processing with the command:

Trace.FindAll , Address address.offset(mmc_start_request) OR Address
address.offset(mmc_request_done) OR Cycle info OR Cycle task /List run cycle
symbol %TimeFixed TIme.Zero data

NOTE: ‘OR Cycle task’ is optional.

Comparison with the software method ftrace
In Linux, eMMC access log solutions based
on purely software methods are already
available. The ftrace framework provides
this capability, as well as being able to log
many other events. The term “ftrace” stands
for “function tracer” and basically allows you
to examine and record the execution flow of
kernel functions. The dynamic tracing mode
of ftrace is implemented through dynamic
probes injected into the code, which allow

runtime definition of the code to be traced.
When tracing is enabled, all the collected
data is stored by ftrace in a circular memory
buffer. In the framework there is a virtual
filesystem called tracefs (usually
mounted in /sys/kernel/tracing) which
is used to configure ftrace and collect the
trace data. All management is done with
simple operations on the files in this direc-
tory.

Comparative tests performed on the DAVE Embedded Systems “MITO 8M Evaluation Kit” target
showed that the ftrace impact compared to the TRACE32-based log solution is considerably
higher in several respects. This is understandable, considering that ftrace is a general-purpose
trace framework designed to trace many possible events, while the instrumentation required
for the TRACE32 log method is specific and limited to the pertinent functions. Moreover, ftrace

WHITE PAPER

page 8

requires some buffering (ring buffer) and saving data to a permanent memory, while the solu-
tion based on TRACE32 uses off-chip trace to save the data externally in real time. The following
tables show a comparison between ftrace and the TRACE32 solution.

Table 1: instrumentation size

 vmlinux code
size

vmlinux data vmlinux
source files

instrumentation
code size (*)

instrumentation
data size (*)

Clean 12,79MB 10,78MB 4640
TRACE32 12,79MB (+0%) 10,78MB

(+0%)
+0 (41 source
code lines in
mmc driver)

+372 byte +64 byte

ftrace 14,78MB
(+15,6%)

11,77MB
(+9%)

+836 (+18%) +1,99MB +0,99MB +
??MB ring
buffer (**)

(*) ftrace instrumentation applies to the whole Linux kernel. TRACE32 instrumentation applies to the functions
mmc_start_request() and mmc_request_done() only.

(**) the actual size of the ftrace ring buffer can be configured during runtime but is typically between 10—
100MB.

In the ftrace-based solution, an increase in
kernel size of approximately 15% (code) and
9% (data) is observed compared to the ker-
nel without ftrace. During the execution of
ftrace it’s also necessary to reserve addi-
tional memory for the ring buffer. The

number of source files used in building the
kernel increases by 18% when the ftrace
framework is included. The weight of the in-
strumentation required by TRACE32, on the
other hand, is practically negligible both in
terms of code and data.

Table 2: instrumentation time intrusion

Average duration at
measuring points (*)

No ftrace
No TRACE32 instr.

No ftrace
With TRACE32 instr.

With ftrace
No TRACE32 instr.

mmc_start_request 6.950us 8.108us (+1.158us) 36.875us

mmc_request_done 0.770us 1.364us (+0.594us) 63.031us

(*) measuring points are the part of functions where the instrumentation is added.

The functions average duration analysis of eMMC accesses highlights the greater weight re-
quired by ftrace. The tests were performed under the following conditions.

Test scenario: R/W access to mmc0 with command:

stressapptest -s 20 -f /mnt/mmc0/file1 -f /mnt/mmc0/file2 ; duration = 20s

Results in /mnt/mmc0 (16MB)

-rw-r--r-- 1 root root 8388608 Dec 3 16:30 file1
-rw-r--r-- 1 root root 8388608 Dec 3 16:30 file2

WHITE PAPER

page 9

Setup for ftrace

echo 1 > /sys/kernel/debug/tracing/tracing_on
echo 1 > /sys/kernel/debug/tracing/events/mmc/enable
echo 20000 > /sys/kernel/debug/tracing/buffer_size_kb ; 20MB buffer size
echo > /sys/kernel/debug/tracing/trace
cat /sys/kernel/debug/tracing/trace_pipe > /home/root/prove/ftrace.txt

Please note that the ftrace pipe is saved to a file on a different memory device (mmc1).

Additional, more detailed charts are provided in Appendix 2, which show that using ftrace also
involves a greater dispersion of the runtime durations compared to both the kernel without
ftrace and the kernel instrumented only with the code for TRACE32. In particular, the functions
mmc_start_request() and mmc_request_done() have a few uS constant execution time
without ftrace, and show a very variable execution time with ftrace, with a maximum time up
to 279uS and 285uS respectively.

Conclusion
The HW method based on TRACE32 provides
the same log data as recorded by ftrace but
with minimal changes to the kernel (a few
lines in a file) and a tiny time penalty. It also
does not use any additional memory (ram

and file system) and allows for extremely
long measurement times.
The following Table 3 summarizes the ad-
vantages and disadvantages of the two con-
sidered solutions: TRACE32 vs ftrace.

Table 3: PROS and CONS

 PROS

 CONS

TRACE32

- light kernel instrumentation;
- no additional memory

required;
- long-term analysis (few hours

up to over 100 days);
- can be ported to other OS /

eMMC device drivers.

- HW-based solution: requires a debug and trace
tool + offchip-trace capable processor and tar-
get

ftrace

- SW-based solution

- available for Linux kernel only;
- heavy kernel instrumentation;
- time intrusion in eMMC operation;
- kernel program and data size increase;
- 10—100 MB of ram required for ring buffer;
- additional storage device to save the ring

buffer;
- for each eMMC operation ftrace saves roughly

876 byte of log information.

Please contact your eMMC vendor to obtain more information on how TRACE32 logs can be
used to calculate your application lifespan. This is a very important milestone to improve the
storage performance stability of your platform and for making sure the expected reliability re-
quirements are met.

WHITE PAPER

page 10

References

Design Considerations for Embedded Products, Western Digital Corporation, 2018
https://link.westerndigital.com/content/dam/customer-
portal/en_us/external/public/cps/p/White_Paper_Design_Considerations_v1.0.pdf

Automotive Workload Analysis, Western Digital Corporartion, September 2021
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-
digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf

Appendix 1: source code example

static struct T32_mmc_struct {
 unsigned int enable;
 unsigned int infoBit;
 unsigned int dev;
 unsigned int * pHost;
 unsigned int cmd;
 unsigned int arg;
 unsigned int flags;
 unsigned int blksz;
 unsigned int blocks;
 unsigned int err;
 unsigned int resp0;
 unsigned int resp1;
 unsigned int resp2;
 unsigned int resp3;
} T32_mmc;

int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
{
 int err;

 mmc_retune_hold(host);

 if (mmc_card_removed(host->card))
 return -ENOMEDIUM;

 mmc_mrq_pr_debug(host, mrq, false);

 WARN_ON(!host->claimed);

 if (T32_mmc.enable) {
 T32_mmc.pHost = (unsigned int *)mmc_hostname(host);
 if ((*T32_mmc.pHost)==T32_mmc.dev) {
 if (mrq->cmd) {
 write_sysreg((*T32_mmc.pHost)|T32_mmc.infoBit,
 contextidr_el1);
 isb();
 T32_mmc.cmd = (mrq->cmd->opcode)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.cmd, contextidr_el1);
 isb();
 T32_mmc.arg = (mrq->cmd->arg)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.arg, contextidr_el1);
 isb();
 T32_mmc.flags = (mrq->cmd->flags)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.flags, contextidr_el1);
 isb();
 }

 if (mrq->data) {
 T32_mmc.blksz = (mrq->data->blksz)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.blksz, contextidr_el1);
 isb();
 T32_mmc.blocks = (mrq->data->blocks)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.blocks, contextidr_el1);
 isb();
 }
 }
 }
 err = mmc_mrq_prep(host, mrq);
 if (err)
 return err;
...

https://link.westerndigital.com/content/dam/customer-portal/en_us/external/public/cps/p/White_Paper_Design_Considerations_v1.0.pdf
https://link.westerndigital.com/content/dam/customer-portal/en_us/external/public/cps/p/White_Paper_Design_Considerations_v1.0.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf

WHITE PAPER

page 11

void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
{
 struct mmc_command *cmd = mrq->cmd;
 int err = cmd->error;
...

...

 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 mmc_should_fail_request(host, mrq);

 if (!host->ongoing_mrq)
 led_trigger_event(host->led, LED_OFF);

 if (mrq->sbc) {
 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 mmc_hostname(host), mrq->sbc->opcode,
 mrq->sbc->error,
 mrq->sbc->resp[0], mrq->sbc->resp[1],
 mrq->sbc->resp[2], mrq->sbc->resp[3]);
 }

 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 mmc_hostname(host), cmd->opcode, err,
 cmd->resp[0], cmd->resp[1],
 cmd->resp[2], cmd->resp[3]);

 if (mrq->data) {
 pr_debug("%s: %d bytes transferred: %d\n",
 mmc_hostname(host),
 mrq->data->bytes_xfered, mrq->data->error);
 }

 if (mrq->stop) {
 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
 mmc_hostname(host), mrq->stop->opcode,
 mrq->stop->error,
 mrq->stop->resp[0], mrq->stop->resp[1],
 mrq->stop->resp[2], mrq->stop->resp[3]);
 }

 if (T32_mmc.enable) {
 T32_mmc.pHost = (unsigned int *)mmc_hostname(host);
 if ((*T32_mmc.pHost)==T32_mmc.dev) {
 write_sysreg((*T32_mmc.pHost)|T32_mmc.infoBit,
 contextidr_el1);
 isb();
 T32_mmc.cmd = (cmd->opcode)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.cmd, contextidr_el1);
 isb();
 T32_mmc.err = (err)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.err, contextidr_el1);
 isb();
 T32_mmc.resp0 = (cmd->resp[0])|T32_mmc.infoBit;
 write_sysreg(T32_mmc.resp0, contextidr_el1);
 isb();
 }
 }
 }
 /*
 * Request starter must handle retries - see
 * mmc_wait_for_req_done().
 */
 if (mrq->done)
 mrq->done(mrq);
}

WHITE PAPER

page 12

Appendix 2: time details

1) time duration analysis: mmc_start_request

1.1) No ftrace, no TRACE32 instrumentation

1.2) No ftrace, with TRACE32 instrumentation

WHITE PAPER

page 13

1.3) With ftrace, no TRACE32 instrumentation

2) time duration analysis: mmc_request_done

2.1) No ftrace, no TRACE32 instrumentation

WHITE PAPER

page 14

2.2) No ftrace, with TRACE32 instrumentation

2.3) With ftrace, no TRACE32 instrumentation

WHITE PAPER

page 15

Appendix 3: TRACE32 tools configuration for Arm Cortex-A/R architectures

This appendix describes the TRACE32 Arm
trace tools needed to perform the eMMC ac-
cess analysis.
Chips based on Armv7/Armv8/Armv9 Cortex
A/R cores typically include Arm Coresight de-
bug & trace logic. In order to increase the
trace recording time, the trace flow pro-
duced by the Arm ETM/PTM trace logic is
sent off-chip via a dedicated trace port.
Typical trace ports are TPIU (parallel) and
HSSTP (serial). Additionally, on some chips
the trace flow can be transferred outside via

PCIe bus, or even stored to an external DDR
memory. This last method can be quite in-
trusive and limits the duration of the meas-
urement because it depends on how much
of the target RAM is free (not used by the
application) and therefore available for trace
storage.
Our recommendation is to use a trace port
to transmit the trace off-chip in real time,
without causing intrusion and without limit-
ing the duration of the measurement.

Lauterbach offers various PowerTrace models, with different amounts of trace storage and
different trace probes. Here an overview:
https://www.lauterbach.com/powertrace_overview.html

Chips based on Arm cores can have different trace ports, in particular:

For chips with "parallel" trace port (TPIU), a PowerTrace-II or, better yet, PowerTrace-III sys-
tem is recommended, plus an Arm AutoFocus II pre-processor with Mictor38 connector.

PowerTrace-III system for Armv7 Cortex-A/R with “parallel” trace port, eg. i.MX6 Quad

LA-3505 PowerDebug PRO Ethernet
LA-2520 PowerTrace III 8 GigaByte
LA-7843 Debugger for Cortex-A/R (ARMv7 32-bit)
LA-7992 Preproc. for ARM-ETM/AUTOFOCUS II 600 Flex
https://www.lauterbach.com/pro/pro_imx6quad_alt03.php

Mictor38 connector p/n and pinout:
https://www.lauterbach.com/adetmmictor.html

PowerTrace-III system for Armv8 Cortex-A/R with “parallel” trace port, eg. some i.MX8M

LA-3505 PowerDebug PRO Ethernet
LA-2520 PowerTrace III 8 GigaByte
LA-3743 Debugger for Cortex-A/R (Armv8 and Armv9)
LA-7992 Preproc. for ARM-ETM/AUTOFOCUS II 600 Flex
https://www.lauterbach.com/pro/pro_cortex-a53_alt03.php

Mictor38 connector p/n and pinout:
https://www.lauterbach.com/adetmmictor.html

https://www.lauterbach.com/powertrace_overview.html
https://www.lauterbach.com/pro/pro_imx6quad_alt03.php?chip=IMX6QUAD
https://www.lauterbach.com/adetmmictor.html
https://www.lauterbach.com/pro/pro_cortex-a53_alt03.php
https://www.lauterbach.com/adetmmictor.html

WHITE PAPER

page 16

For chips with “serial” trace port (HSSTP), either a PowerTrace-II or PowerTrace-III
with Serial Preprocessor, or a PowerTrace Serial can be used.

PowerTrace-III system for Armv8 Cortex-A/R with “serial” trace port, eg. i.MX8 Dual x Plus

LA-3505 PowerDebug PRO Ethernet
LA-7694 PowerTrace II 4 GigaByte
LA-3743 Debugger for Cortex-A/R (Armv8 and Armv9)
LA-7988 Preproc. for ARM-ETM/HSSTP HF-Flex
https://www.lauterbach.com/pro/pro_imx8dualxplus_alt03.php

Samtec40 connector p/n and pinout:
https://www.lauterbach.com/adetmhsstp.html

PowerTrace Serial system for Armv8 Cortex-A/R with “serial” trace port, eg. i.MX8 Dual x Plus

LA-3505 PowerDebug PRO Ethernet
LA-3743 Debugger for Cortex-A/R (Armv8 and Armv9)
LA-3520 PowerTrace Serial 4 GigaByte for ARM-ETM
LA-3521 Accessories for PTSerial for ARM-ETM 1-6Lanes
https://www.lauterbach.com/pro/pro_imx8dualxplus_alt04.php

Samtec40 connector p/n and pinout:
https://www.lauterbach.com/adetmhsstp.html

Some chips which provide sufficient PCIe lanes have the ability to transmit the trace out through the
PCIe bus. In this case a PowerTrace Serial system with a particular adapter for PCIe is required. This
method can be used as an alternative to the classical “parallel” or “serial” trace ports from Arm.

PowerTrace Serial system for Armv8 Cortex-A/R with PCIe trace, eg. i.MX8M Mini Quad

LA-3505 PowerDebug PRO Ethernet
LA-3743 Debugger for Cortex-A/R (Armv8 and Armv9)
LA-3520 PowerTrace Serial 4 GigaByte for ARM-ETM
LA-3550X License for PCI Express
LA-3522 Accessories for PTSerial for ARM-ETM 7-8Lanes
https://www.lauterbach.com/pro/pro_imx8mminiquad_alt03.php

PCIe connectors and adapters:
https://www.lauterbach.com/adpts_pcie.html

For further technical and commercial information, please contact the Lauterbach office for
your area:
https://www.lauterbach.com/worldwide_rep.html
https://www.lauterbach.com

https://www.lauterbach.com/pro/pro_imx8dualxplus_alt03.php
https://www.lauterbach.com/adetmhsstp.html
https://www.lauterbach.com/pro/pro_imx8dualxplus_alt04.php
https://www.lauterbach.com/adetmhsstp.html
https://www.lauterbach.com/pro/pro_imx8mminiquad_alt03.php
https://www.lauterbach.com/adpts_pcie.html
https://www.lauterbach.com/worldwide_rep.html
https://www.lauterbach.com/

	Introduction
	Arm CoreSight™
	Lauterbach TRACE32 development tools
	TRACE32-based eMMC access log solution
	Implementation example for Linux OS
	Comparison with the software method ftrace
	Conclusion
	References
	Appendix 1: source code example
	Appendix 2: time details
	Appendix 3: TRACE32 tools configuration for Arm Cortex-A/R architectures

