I /775 A
DEVELOPMENT TOOLS

Intelligent Trace Analyses for Cortex-M3/M4

Troubleshooting, performance tuning and code- The cause of an error such as an incorrect data value
coverage - all of these can be performed quickly and being written into an address can be easily found if the
precisely on an embedded system if the adequate write accesses are embedded into the overall program
trace analysis is provided. trace.

In 2011, Lauterbach explored new paths to enable
optimized trace analyses for the Cortex-M3/M4 pro-

cessors. .
O O Udld d < < O
& setup...|| 13 Goto... || #iFind... | A chart || B Profile | B MIPS || % More| X Les:
- om record run |address cycle |data symbol ti.back |
Combining ETM and ITM | T
orr ré,r2, #0x10 =l
346 ——— g‘jen = data; :
For Cortex-M3/M4 processors, trace information can be S eR01050 o Tore :
. . -01981060 T:680085D0 ptrace viahdemo\thread_5+0xC4 4.660us
generated from two different sources (see Figure 3). The e T —— o
ETMv3 generates information about the executed instruc- | L TR
tions. The ITM generates information about the performed (LB pesno0EA r
read/write accesses assisted by the Data Watchpoint and
Trace Unit (DWT)- Fig. 1: By combining ETM and ITM trace data, read/write accesses can be

integrated seamlessly into the program sequence.
The ITM trace packages for read/write accesses contain
the following information: data address, data value, pro-
gram counter. OS-Aware Tracing

Through analysis of the program counter, the data If an operating system is running on the Cortex-M3/ M4,
accesses which are separately generated can be task switch information becomes essential for the trace
seamlessly integrated into the program sequence (see analysis.

Figure 1), which in turn leads to significantly simpler error In order to receive information about task switches the
location. following method can be used: Trace information on the

[EEER
File Edt View Var Bresk Run CPU Misc Trace Perf Cov STM32FI0x eCos Window Help
(Mt eelrnl®E 2w g
n n
\l Instruction flow with task sw.tches (ETM&ITM) Call tree for task "sens1" (ETM&ITM)
:+{ B:Trace.List List. TASK DEFault [r=][-=r|EESs] | =1 B:Trace STATistic. TREE /TASK "sens1” EEE=E]
& setp...| 3 coto... || FFind... || Mchan] H Profile !MIPS 2 More Lesé | | & setup... | jii Groups... |38 Config...|[A Goto... |[E] Detailed)|] Nesting || %= Chart
record run [address cycle [data symbol [ti. back i || Funcs: 14 total: 89.600ms
inline void Cyg_SchedThread Implementation::timeslice_restore() ;';] tree lavr |count i
{ = = (root) 89. 600ms - &
B . Cyg Scheduler_Implementation: :times1ice_count[CYG_KERNEL_CPU_THIS()] = times = Cyg_Thread: :dela: 0.000us 0.
Fl r3,[rd4,#0x24 = —E Cyg_Thread::delay 148.249us 578.
B Cyg_Schedu1 er::unlock_inner 41.42%us 578.
235 current_thread[CYG_KERNEL_CPU_THIS()] = current; // restore cu__ = Cyg_Scheduler_Implementation: :schedule 6. 572us L
| str rd, [r A chg HardwareThread: :thread_entry 13.690us ik
--- THREAD magic = 68016308, id = 7., name = sensl e g SchEdu'IEr :thread_entry 13.690us 1.
—48245317 D:68046EL8 wr-Tong 68016308 . Schedu]er Base::current_thread 0.100us BCyg_Al\/arm :disable 29.784us 577.
-48245316 T:6800C6D6 ptrace ..g_Scheduler: tuniock_inner+0x6A 0. 060us L. Cyg_ Scheduler : :unlock_inner 22.722us 577.
1 = Cyg_Thread: sTeep 28.771us ST
LA Cyg_ ScheduTer _Implementation: :rem_thread 11.431us 577.
inline void Cyg_SchedThread_Implementation::timeslice_restore() ECyg_Alarm::initialize 26.953us 577.
{ . Cyg_Counter: :add_alarm §.927us SET:
317 Cyg,ScheduMEr,Imp'\ ementation: :times1ice_count [CYG_KERNEL_CPU_THIS()] = times - (yg_thread_de'\ ay 149.755us 578.
r3,[rl0 B -
il il .] » J; s I] »
|- Timing diagram for task switches (ITM) Timing diagram for task MIPS (ETM&ITM)
I
£ BuTrace.Chart. TASK [= (= [==] | Bl B=MPSPROfileChart.TASK = @[]
(& setup...| i Growps.. | 88 Conﬁg JUR Goto... || r] Fmd] 4% In | 4 Out| WM Ful (& Setup...] i Groups... | (2 Config...[@} Goto... [#) Fmd 0 Ln N Dut M Ful X ou)[E
-91.900s -91.800s 10.000us [l Cunknown) [heapsort W quid sort
L | | | -57.580s -57. ssns -57.5205
- instr/sec I 1 1 I |
— == | 4000000. 0 =
u =
| I 2000000.0 ‘:vl
I
- e . = 0.0 B
= i <fmj » | G
‘B: i
[emulate] frigger [devices][frace][Data] [Var] [List] [PERF][SYStem][Step.] [Go] [Break] [sYmbol][Frame][Register FPU other] [previous
| ST:6800827E \\a\demo\heapsort+0x52 heapsort |stopped [| M P

Fig.2: Through the combination of ETM and ITM trace data, extensive trace analysis can be provided for the eCos operating system.

www.lauterbach.com

I /775 A
DEVELOPMENT TOOLS

write cycle in which the kernel writes the identifier for the
current task on the corresponding OS variable can be Cortex-M3/M4 Core
generated using the ITM. As described above the write

access information can be integrated seamlessly into the DWT

program flow trace. This improves the readability of the 4 hardware watchpoints
trace listing (see Figure 2). The integration of the task on load/store operations
switch into the program sequence also forms the basis for
the runtime analyses shown in the figure 2.

I™
Instrumentation Trace

Three Recording Modes

To record the trace information generated by the
Cortex-M3/M4 processors, Lauterbach supports three
modes:

¢ FIFO mode: Storing the information in the 128 MByte Trace Port Interface
memory of the TRACE32 CombiProbe. Unit

¢ STREAM mode: Streaming the information to a hard-
disk on the host computer.

¢ Real-time Profiling: The trace information is streamed
to the host computer and analyzed during runtime.

For the first two recording modes, the trace information is
collected and the trace analysis is undertaken after recor-
ding is completed.

. . . s 3 TRACE32
Each recording mode has its own features. FIFO is the CombiProbe
most commonly used mode. It is quick and usually all that
is needed for error location and the runtime analyses. l
H File Edit View Var Break Run CPU M\st ace rf Cov STM32F10x eCos Window Hel
The ET_MVS |mp_Iemented on Cortgx-M3/M4 processors MnlsvernZ 0o Dumaade:is
has neither a trigger nor a trace filter. It is not possible e T S
to select for recording only those program segments that 9 g sy
are needed for troubleshooting. This can mean trace data I mee =B iE
ight h to b llected f latively | iod i e e (B, [s S .
might have to be collected for a relatively long period in eSS (s e -
order to cover the area needed for analysis. In this case Pés00s1aN- gaonsas ’Egg;ﬁkm 1000008 e
the STREAM mode can be the best option. The STREAM biERo0tao ehonsr:| o chetich R
. P:68008344--68008377 @ shellsort partial | 84.615% ie——————
mode, however, places high demands on the debug e | B e e o e ———
environment: - - : :
Statement coverage on running system
e The large amount of data that results from streaming | Bt st coveoge el
requires a 64-bit TRACE32 executable. This is needed Mo L Bou [ktes eamun | g | poy | Wase Hvose 1o demes
to allow the add forthe | ber of t | R g —— e R L) S &
0 a OW e a reSS range or e arge num er O race ok VMT:680086AE F(lﬂ FBBF bl OXESD(\AESD
. . ok :6800868B2 |1 mov r rO
entries that will be collected. o ol TiEESES e e
* The transfer rate between CombiProbe and host com- % wrscaoonggs oo ieo ::;jgj:ndm oo o
puter must be fast enough to stream all trace data - 1 ey 5
without a data loss. The 128 MByte memory of the DL o ISR
. . . ok create_random_1fsr (msg->arr,len);
CombiProbe is used to cushion load peaks from the & ymesenics o e MOU;: i
trace port (TPIU). Ik — :
is::‘
; T i : i (et) (_sigger) [_devices) (oo) [_vain) [ver [t) [otter) (previous |
Real-time Profiling is particularly suitable for performing — A " e | e

statement and condition coverage. The coverage analysis
can be followed live on the screen and the test results are
visible immediately (see Figure 3). “ok” marked lines are Fig.3: Real-time profiling enables code-coverage analysis to be followed
already covered. live on the screen

www.lauterbach.com

