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Tracking the Virtual World

Synopsys:

For many years the JTAG interface has been used for ARM-based SoC debugging. With this
JTAG style debugging, the developer has been granted the ability to debug software at the high-
level. Breakpoints could be set, registers and memory could be accessed, and the processor
could be started and stopped at will. Thus the static state of the system was made visible to the
engineer. It seemed the only thing missing was visibility to a history of executed cycles. With
the introduction of the Embedded Trace Macrocell, commonly known as ETM, this requirement
had been fulfilled. Offering a program flow trace by way of a compressed trace port, the
developer could now see a history of executed cycles. Ah, was this freedom from static mode
debugging?

ETM enabled the capture of virtual addresses where the processor had executed, enabling the
program flow trace. This process works great for systems using a statically mapped
MMU(memory management unit), where each virtual address uniquely maps to a physical
address. But with many of today’s popular operating systems, such as Linux or Windows CE, a
dynamic MMU is used. In this case the mapping of the virtual address depends on the active
process, requiring additional smarts to be built into the debugger.

This article outlines the method which enables the Lauterbach debugger to analyze a program
trace, despite these process-dependent virtual addresses. But before tackling the topic at hand,
let’s take a deeper look at this ETM technology.

The ETM is a core that sits next to the CPU. Ilts main purpose is to monitor the cycles executed
by the CPU and to present, via a dedicated trace port, the program flow information to the used
debugger. Thus the ETM only outputs trace information relating to discontinuities in program
flow, such as branches or interrupts, which directs the CPU away from its sequential execution
path. With this information, and the knowledge of what code existed in memory at the time of
execution, a complete trace history can be reconstructed. To display the complete instruction
flow, the debugger reads the corresponding instructions from the target memory in order to fill in
the gaps between the execution discontinuities that have been recorded (See Fig. 1).
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8 B:: Trace.List TP DEFault

wSetup... MY Goto. || #3Find.. |[ #&[Chart || 4 Moe || X Less
record tp run_address cycle data symhol ti.back -
AlAARAA1AS B4 R:888822F8 ptrace .Sieve+dxh B.718us =~
: ldrh B, [rd, +r2] =]
ArRApAR1A4 22 D:PAAABGF 34 rd-byte @@ ..flags+@x10 B8.885%us &
ARAPAREI7 N R:0AAAZ2FC ptrace .sieve+Bx54 2.135us A
cmp ré, iaxa |
heq Ax2338
698 ¥
699 ¥
- b Ax22EC
B add r‘2;r‘2.1ﬂ3x1 1 1111“1
h Ax22ER
- chp r2,#8x12 i i,#18
hle Ax22F4
687 T
b88 if ( flags[ i 1 )
[ - 1ldr ri,8x2344
AIEABRRA96 2A D:AAAAZ344 rd-long BAPAGFZ24 ..sieve+Bx9C A.890us
A00PRRRRS6 |84 R:080022F8 ptrace .Sieve+dx5@ 8.715us
| ldrhb réd, [r@, +r2]
ARRAPARRES 26 D:APARGF 35 rd-byte A1 ..flags+Bx11 <B.AASus .-
A000AAEA3A C4 R:088822FC ptrace .Sieve+ixh4 B.175us ~
|

Fig. 1: The yellow area to the left of the screenshot displays the raw trace data as it was
recorded by the debugger’s trace module. The actual program flow is displayed on the right, as
it has been reconstructed by the debugger using the code from the target memory.

In addition to the program flow, the ETM also has the ability to supply information relating to
data accesses. However, this can cause problems with the program flow information do to the
large amount of information that is required (i.e. a long access would require a 32-bit address
and 32-bit data). Too many data accesses within a short period of time can cause an
overloading of the ETM trace port, resulting in gaps in the recorded program flow.

Since the ETM is assigned directly to the CPU, it always delivers virtual addresses. Which is
appropriate since the code is executing in this address space, as well as all of the variables,
pointers, stack, etc... In this case we do not care which physical address a given process runs.
As the trace and memory are presented in the same way the processor sees them, which is
most desirable.

But what happens if MMU is reprogrammed at run time causing the processor’s view to change
during execution? In this scenario, some virtual addresses can become invalid, others become
valid, and yet others could be mapped to different code than when execution began. Since the
ETM only displays the virtual branch destination addresses, and not the code that has actually

been executed, it now becomes difficult to reconstruct the program flow.

Operating systems utilizing a dynamically managed MMU are typical examples of this scenario.
These include, Windows CE, Linux, QNX, LynxOS and Symbian OS. With these embedded
operating systems, each process receives a separate virtual address space. Physically, these
obviously reside in different memory areas. But virtually, every process uses the same address
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space, which typically begins with address zero. Therefore the processor only works in the
address space of the currently active process. During a process change, the processor's MMU
is reprogrammed such that it then sees and handles a completely different process (code and
data) within the same virtual address space.

So what happens if a trace recording includes one or more process switches?

Let’s assume the system first runs in process “A.” In this case the ETM records the program
execution using the virtual addresses of process “A.” Now assume a process switch occurs
causing the MMU to be reprogrammed so that process “B” is now visible to the CPU, and
process “B” is now being executed. The ETM now records the program execution with the
virtual addresses of process “B.” If we now stop the processor along with the trace recording
and attempt to reconstruct the program flow, two problems arise:

Problem 1: Since the two processes use the same virtual address space, both processes will
appear in the trace buffer to be executing from the same address space. Although, process “A”
and process “B” are really two different processes, each with its own unique code. It is now the
task of the debugger to distinguish between which parts of the trace belong to which process.

Problem 2: As mentioned previously, the ETM only records branch destination addresses, and
not the code that was actually executed. Thus the debugger depends on its ability to access the
executed program from target memory in order to reconstruct the program flow. However, at
the time of the reconstruction, the processor is in the context of process “B” and cannot directly
access the code in process “A.” Therefore reconstruction of process “A” would not be possible.
Thus the debugger must be allowed to access the code from process “A,” even though the
current context is in process “B.”

Let us first address problem 1. To correctly correlate the collected branch trace history back to
the correct piece of executed code, it is important the debugger knows exactly where in the
trace history the process switches had occurred. This requires the trace system to include a
mechanism by which the process switches can be collected during real-time execution.
Typically, each operating system has a variable that shows which process is currently active at
a given time. This process variable is written with a new value (relating to the new process)
whenever a process switch takes place. By recording the write accesses to this process
variable, the debugger has the ability to decipher which sections of the trace history correlate to
which process. From the point of one of these process variable writes, until the next time it is
written, everything runs within the context of the described process (See Fig. 2).
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4 B::Trace.List List. Task Default

wSetup... {3 Goto.. || $£3Find...
record run address cycle data symbol ti.back
230 % 15
-AAR151 R:0000 :CARIF648 exec ..linux_pcsischedysschedule+@x1D8  <8.0828us
cnp ri4,#0x0
-BaA15a R:A0880 :CAA1F644 exec ..linux_pcsisched\schedule+8x1DC A.108us
bne BxCAB1F698
-AAR149 R:0000:CAAIF6I8 exec .linux_pcsiyschedysschedule+@x23@  <8.02Bus
F ldr r3,[r11,#-8x2C1
-pER142 R:AAA0A:CAAIFEIC exec ..linux_pcsischedyschedule+@x234 @.A88us
str ri,r3l
-— TASK = C1C620088 deno
-ARR147 D:80600:CA122020 wr-long C1C6280@8 .wvmlinux_pcsischedyaligned_data <0.828us
—AAR146 R:0000:CAA18468 exec .ux_pcsisGlobals__switch_to+Bx1C @.080us
mcr pi5,8x8,rZ,c3,ch,Bx0
-ABA145 R:0800:CAA1846C exec .ux_pcsiGlobals__switch_to+Bx2@ A._880us
nsr spsr,riz
-Aan144 R:A080:CAA18478 exec Lux_pcsselobalys__switch_to+Bx24 A.180us
ldnia ri3!,{r4-rii,pci»
-#aA143 R:@A3E :CAAIF7AC exec ..linux_pcsischedsschedule +Bx344 A._880us
F mov r5,rid
-Aan142 R:@A3E :CAAIF 7BA exec ..linux_pcsischedischedule+@x348 A.180us
1dr r3, [r5,#8x281
-AAR141 R:803E :CAA1F7CE exec ..linux_pcsyschedyschedule +8x368 a.780us
ldndb ri1,{r4-ri11,ri3,pc}
215 if (CodeCov)
F 1dr r3,8x9018
—888118 R:@A3E :@AAAIICA exec wdenovarmsnain+Bx234 A.36Bus
ldrb rZ,[r3l
—AAR139 R :@RA3E :AAAR99CE exec ‘\demoharmwnaint@x238 A.A8Aus
cnp ré,iixa
—ABA138 R:083E :ABBPIOCC exec \wdenosarminain+8x23C <@.820us
heqg #x9908
—AaR137 R :@R3E : AAAR99DE exec ‘\demosarmvwnain+tB@x248 A.88Aus
219 flags[5] = Oxaa;
F 1dr r3,8x901C
—AAR136 R :@A3E :AAAR9SDC exec s\demosarmsnaintB@x24C <@.020us
nov rZ, #8xAn

Fig. 2: This screenshot shows a trace recording in which a process switch has occurred.

So in order to gain visibility to these context switches, the ETM must be programmed in such a
way that the write accesses to these process variables are recorded in addition to the normal
program flow information. It must also be possible to filter out the other, non-process related,
data accesses. As we discussed earlier, the collection of too many data accesses can exceed
the transmission capacity of the ETM port.

This method allows the debugger to assign the individual trace entries to particular processes.
However, there are a couple of disadvantages. Firstly, in order to assign a segment of trace to
a known process, the process variable must already have been written/known. So the segment
of trace information from the start of the trace collection until the first write to the process
variable cannot be assigned to a known process. As there is no way of telling which process
was executing prior to the first recorded process switch. Secondly, there must be an available,
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correctly programmed, trace filter that can be used for the sole purpose of collecting the
accesses to the process variable.

With the introduction of ETM version 1.2, hooks were built into the trace system, enabling yet
another method by which the process switches can be tracked. ETM v1.2 includes an
additional register, “context ID,” which contains the process ID. It is the responsibility of the
operating system to update this “context ID” register whenever there is a process switch. The
contents of this register can be collected along with each target branch address, as part of the
program flow trace information (See Fig. 3). Given this additional information, now the
debugger knows the corresponding process ID for each trace entry, without having to first
search for an access to the process variable. Always having knowledge of the process ID, even
the beginning of the trace capture will be assigned to its respective process.

£ B::Trace.List |_ || O |&|
Foeup. | #crs. )[R Gow. | #iFind. |[E]TREE |[ 2 chan |ElFunc chal[ £ Mors ][ X Less
record run_address cycle data symbol ti.back
orr rZ,ri,rz,1sl #8x8 A~
—17248414 R:B027 :80019EE4 exes .rn\Global\DoProcessSwitch+Bx18 a.848us o
mcr p15,8x8,r12,c?,c18,8x4 3l
—17248414 R:PA27 :BAA19EERE exes .rn\Global\DoProcessSuitch+Bx14 A.848us =
orr ri2,ri2,#8x18 &
—17248414 R:A0Z27 :8BA19EEC exes .rm\Global\DoProcessSwitch+@x18 A.848us
mcr p15,08:x0,r12,c2,ch,Bx0
-17248414 R:8027 :8PA19EFB exes .rm\Global\DoProcessSuitch+Bx1C 8.840us
hx ri4
—17248418 R:PA27 :80A15AA8 exes .._ekern\Global\switch_threads_4 A.0848us
mcr pi5,8x8,r2,c13,c,Bx1
—  task: efile.exe:Main (CBB4EEZ8)
—17248404 R:A0A9:88A158AC exes ..esched_trampol ine_hook_address A.848us
h Ax800150E8 ; resched_trampolin
—17248404 R:B009 :8PA150E8 exes .kernxGlobalvresched_trampol ine 8.838us
1dr ri,[r8,#0x1281]
—17248483 D:9@@3 :CBAAASSE rd-long B8AAGB7BA .kerniGlobaliTheScheduler+Bx12@0 <@ .0@1us
—17248397 R:A0A9:8PA15BEC exes .AGlobalwresched_trampol ine+8x4 A.A838us
1dr ré, [ra,#8x130]
—17248396 D:PAA9 :CBAARSEA rd-long CBA4EEZB .kernsGlobalisTheScheduler+@x13@  <@.A@1us
—17248494 R:8889 :8881508AC exes ..esched_trampol ine_hook_address 8.0848us |
| =5

Fig. 3: A process ID is displayed in addition to the branch destination address.

Needless to say, either method still requires the debugger to be informed how to analyze these
entries. The Lauterbach debugger is informed of this additional trace information by way of an
OS awareness declaration file. This is an operating system specific file that describes the
unique characteristics of the used embedded operating system.

Now that we can reliably determine the virtual addresses and corresponding processes of the
collected trace, we now have everything necessary to recreate the complete execution history of
the processor. Since the ETM only captures the branch destination addresses, and not the
entire program flow. The source code can be read from the target memory and used to fill in the
gaps in the program flow, that occur between the collected branch messages.
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Reading the code of the current process is no problem, since the processor and MMU will
already be configured to allow access. However, to read the code of another process, the
debugger must somehow bypass the current MMU settings, as the MMU will not allow access to
the virtual addresses of an inactive process.

Hidden in the operating system is information relating to the used virtual to physical translation.
Reprogramming of this MMU translation is managed by the operating system during each
process switch. By scanning the operating system for this information, the debugger can create
a conversion table which includes the mapping between the used virtual to physical addresses
for all processes. Thus the debugger now knows the mapping between all virtual to physical
addresses for all processes. Now, rather than having to change processes to access the
required code from an inactive process, this table can be used to determine the related physical
address. And by deactivating the MMU, the debugger can directly access the code of an
inactive process by way of its equivalent physical address.

E B::t.chart.task

}Setup | GrDuF-S |== Carfig..|| (¥ Gata... || $3Find.. {}Inl P Cut|(M Full

—2 ABds -1.988s -1.888s
T‘ﬂnﬂE ........ L L L e
(roo)l
kupdatedy
demoe  HENNDDM 00000 L
suapper /N 2 HEEEEEEEE—— L
shet 010 Lo I
£ >4 >

i { Nesting) 28] Task chaf_ @ Init_|
tasks: 5. total: 43665
range time avr count ratio ¥ |14 24 5% 18% 204
(root) | 42.820ms | 42.820ms a. B.962/ |+
kupdated | 417.468us | 139.153us 3. A.8R9x |+
demo | 848.582ns | 23.358ms 36. 19.252%
suapper 3.395s | 113.156ms 8. T7.7584
sh | 25.865ns | 923.759us 28. B.5924 |+
< >

Fig. 4: Graphical and statistical analysis of the process switches recorded in the trace.
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(£ B:: Trace. COVerage. ListFunc

address coverage  executed B4 5@ 108 taken nottaken | '
R :BRZC : ARAAT9 /68— AABKNT 7BF # CChrk never | 0.008% a. 8.
R :B@2C : 00009 790—-00BNIAZ 7 + wain partial | 49.397/ \=———— 3 ¢ :H
R:802C : APAASAZE--PRBBIAFF -l sieve partial | 96.2967 = —— 4. 4.
C :AAZC : APAAIA3E——-POBBIAAF arm.cy5A5--512 ok 100 . 0087 a. a.
C :B@ZC : BRAAIASA——BBBBIAS 7 arm.cx513--514 ok 180 . 80887 a. 8.
C :AAZC : AAAAIASE—BABEIAG3 arm.cy515--516 ok 100 .808% E
C :AAZC : AAAAIAEI—BABEIAS3 arm.cy517--518 ok 100 .8088% ¢ 5 £
C :BAZC : ARAAIAI1—BaB8IAN3 arm.cy519--520 ok 1008087 £ £
C :BAZC : ARAAIAAT—BBBEIARE arm.cy521--522 ok 1008087 a. a.
C :AAZC : AAAAIAAC—BBBBIARF arm.cy523-—-523 ok 100,808 a. a.
C :AA2C : ARAAIAEA—BABEIAEE arm.cy524-——524 ok 100,808 § 55 1+
C :AAZC : ARAAINEC—-BABEINCE arm.c\525--526 ok 100,008 a. a.
C :AAZC : ARAAINCC—-BABRINCE arm.ci\527--527 ok 100,008 a. a.
C :AAZC : ARAAIADA--AABEIAD3 arm.c\528--528 ok 100,008 a. a.
C :ARZC : ARAAIADI--BABRIAE 7 arm.c\529--529 ok 100,008 a. a.
C :ARZC : ARAAIAES——BABKNIAF B arm.c\530--533 partial | 60,000, =——————— a. a.
C :AAZC : ARAAIAF C-—-BABNIBRF arm.c\534--534 ok 108,008 a. a.
R:802C : ANAASBAR--PPABICAR # correct_sieve partial | 97.014% 5. 5.
R:802C : APAASCAC—-PPABIERR # correct_sieve_11 partial | 95.3127 ———— 8. 10.
R :B82C : BBBAIEAC——-BBBBIECE # func2d never | B.8088% a. 8.
C :A@ZC :ARAAIECC—BABBABAY | = codecov never | @.008% a. a.
R :B0ZC : ARAAIECC—BABBIFSY # CodeCovReset never | @.008% a. a.
R :B@ZC : AAAAIF S8 ——BaBBAB4 7 # CodeCovTest never | @.008% a. B.| »

(£1/B::Trace.COVerage.ListFunc

address coverage executed B4 58 108 taken nottaken '
C:@AA0 :CAA18B4A——-CAR19623 | = irg partial | 18.364Y 18. 15. | ~
R : 0888 : CARBAZAB-—-CARRAZBF # init_irq_proc never | B.008Y% a. a.
R :AAAA : CARBAZ18——-CARBAZCT # init_IRQ never | B.080Y% a. a.
R :0000 : CAA18B48——CA0 18B4F + dummy_mask_uvrmask_irq never | 0.008Y% a. a.
R :AAAA : CAA18B58——CAR 16B9B # disahle_irq never | B.008Y% a. a.
R :@880 : CAA18B9C—-CA0 18C5B # enable_irq never | B.08@x% a. a.
R :0888 : CAA18C5C—-CAR 18037 # get_irq_list never | B.008Y% a. a.
R :AAAA : CAA18D38—-CAR 18DFF # c¢heck_irq_lock partial | 62.000) ——————— 4. 5.
R :0A080 : CAA18EAR——CAR18E7H # __do_irq partial | 77.419) ——— 3. 1.
R :AAA8 : CAA18E 7C——CAR18FAJ # do_IRQ partial | 64.064) ——————— 1. 6.
R :PAA0 : CAR18FA4-—CAB19873 # do_pending_irgs never | 0.808% a. a.
R :0880 : CAR19874——-CAR1911F + asm_do_IRQ partial | 58.139) ——— 2. 3. | >

Fig. 5: Code coverage analysis using processes and kernels (segments) based on the trace
recording.

Now that the debugger has access to all of the code, including active and inactive processes,
the entire program execution can be reconstructed, even through several process switches.

With this information, Lauterbach debugging tools can offer the ability to analyze process
runtimes (See Fig. 4), cache usage or code coverage (Fig. 5). And with Lauterbach’s latest
generation of debugging tools, a 2 gigabyte trace memory is available, enabling analysis of

quite long run times. For more information, please contact your local Lauterbach representative.

Rudolf Dienstbeck, RTOS Integrations, March 2006
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