
www.lauterbach.com

TRACE32: the most complete tool for

embedded linux debugging

A Linux system is composed of several software

components very different from each other. Free or cheap

debuggers are generally used for one of these components,

but not for others, and require the user to wade through

different debugging techniques not homogeneous.

The aim of the presentation is to illustrate how a

professional system Lauterbach TRACE32™ enable

debugging of each linux component, from uboot to the

kernel, modules and dynamic libraries, from processes to

threads: a total view of the system, with a single debugger,

in the same debugging session.

▪ Maurizio Menegotto

 Lauterbach Italy

TRACE32: the most complete tool for embedded linux debugging ▪ 11/10/2014 ▪ www.lauterbach.com

▪ 2 / 58 ▪

Agenda

Seminar and live demo

 Linux debugging: problems & solution

 Debugging all linux components

 Stop-mode & run-mode debugging

 Trace, performance, profiling

 TRACE32 PowerTools

 Q&A

Maurizio Menegotto

Lauterbach Italy

TRACE32: the most complete tool for embedded linux debugging ▪ 11/10/2014 ▪ www.lauterbach.com

▪ 3 / 58 ▪

Agenda

Seminar and live demo

 Linux debugging: problems & solution

 Debugging all linux components

 Stop-mode & run-mode debugging

 Trace, performance, profiling

 TRACE32 PowerTools

 Q&A

▪ 4 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

In modern embedded systems, more and
more frequently developers use operating
systems, Linux is one of the most open
source kernel used.

An embedded system based on Linux
poses several problems from the point of
view of debugging, as it consists of many
different elements, and has advanced
features that complicates the live of the
debugger, such as on-demand paging,
and dynamic MMU management.

Linux debugging, the problems
Linux system components

The debugger free or cheap are generally
used for one of these components, but not for
others, and require the user to wade through
different debugging techniques and frequent
recompilation.

Instrumentation,

printk, printf,

kgdb, gdb…
console,

ethernet,

serial port

▪ 5 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

A professional system Lauterbach TRACE32 enable debugging of each linux
component, from uboot to the kernel, modules and dynamic libraries, from processes
to threads.

Linux debugging, a unique solution

uboot

 Linux

threads

kernel

modules

drivers

shared libs

Linux System

N
e
tw

o
rk

process

process

xloader

CPU

threads process

threads

shared libs

Flash

TRACE32 PowerView gives an immediate and
complete view of the entire system with a single
debugger, in the same debugging session, both
in stop-mode and run-mode.

▪ 6 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

To debug a Linux system with TRACE32 you need:

Linux debugging, what you need:

Your computer

Your TRACE32

Your Target

A PowerDebug HW + JTAG
debug cable for your chip.

A Cortex™-A9 in this example

Target with a JTAG port

An Architech Tibidabo
Board based on Freescale
iMX6 Quad

• PC Linux or Windows

• Your linux application

• TRACE32 PowerView SW

 Note: application and kernel must be compiled with debug symbols!

▪ 7 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

PowerDebug JTAG debugger

Ethernet

or USB

link

Powerview debugger

The only physical connection to the target, required for debugging, is the JTAG
port. TRACE32 has full target control since power-on reset.

JTAG Cable

Linux debugging, connection

TRACE32 can debug a Linux
system already stored in flash, or
just load a new kernel into
execution memory and start it.

target board Tibidabo iMX6

TRACE32: the most complete tool for embedded linux debugging ▪ 11/10/2014 ▪ www.lauterbach.com

▪ 8 / 58 ▪

Agenda

Seminar and live demo

 Linux debugging: problems & solution

 Debugging all linux components

 Stop-mode & run-mode debugging

 Trace, performance, profiling

 TRACE32 PowerTools

 Q&A

▪ 9 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: booting

Enabling the debugging session TRACE32 can take control of the cpu since the
boot and show the program in memory, usually stopped at entry point

You can load symbols
to debug the bootloader
(Xloader, Uboot, ...)

And proceed to source-level debugging of everything is running before Linux

▪ 10 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: kernel start

Typically a bootloader initializes the hardware
and configure it to run the operating system.

The Linux kernel image (uImage) is loaded into
RAM by the bootloader (uboot) or even by the
debugger itself.

By booting the kernel, you can continue
debugging from the entry point of Linux:

Terminal emulator
integrated in TRACE32

T32 DEMO

▪ 11 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

You can load kernel symbols
(elf/dwarf file vmlinux) and
debug it from start_kernel()

Debugging linux components: kernel symbols

If you boot Linux and stop the run with a BREAK, you can see the program
running at address 0x8xxxxxxx

T32 DEMO

▪ 12 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: kernel debugging

With the symbols (vmlinux) you can do source-level debugging of kernel: you can
set breakpoints, run in step, see functions, registers, static variables and local
variables in the stack-frame ...

T32 DEMO

▪ 13 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: multicore debugging

The kernel is initializing with only core 0 active. In kernel_init() function is called
smp_init() which activates the secondary cores 1, 2, 3.

The system becomes now multicore, so
you must configure TRACE32 to handle
4 cores simultaneously in SMP mode
(Symmetric Multi Processing):

CORE.ASSIGN 1 2 3 4

▪ 14 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: multicore debugging

After the execution of smp_init() and configuration of TRACE32 in multicore mode
you can open new views on other cores, which will be running starting from
secondary_start_kernel() function.

▪ 15 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

In multicore mode SMP, all cores are handled simultaneously for commands as
GO/BREAK/STEP and Breakpoints. For each window, you can have a specific
view/color by core, or you can select the default core view in the Cores menu.

T32 DEMO

Debugging linux components: multicore debugging

▪ 16 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: linux aware debugging

Kernel debugging can be done with a JTAG debugger also not specific to Linux.
The entire kernel block can be considered as a single program (very big).

HOWEVER this is not enough to debug an entire Linux system

 How can you make the debugging of "dynamic objects" as the processes and
their threads, libraries and kernel modules?

 You must consider the memory management (MMU) of the CPU and the kernel

 The debugger must be aware of the running operating system. Must give a view
of the resources of Linux and have specific commands for their debug.

All of this is managed by the extension

TRACE32 Linux Awareness
(linux.t32)

▪ 17 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: Memory Management (1)

 The different components of the system are physically loaded in memory at

absolute addresses, but execute at virtual address (logical)

 Kernel has a fixed Virtual-Physical translation

 Processes have dynamics Virtual-Physical translations

 Virtual Memory Physical Memory

0x80000000

0x7F000000

0x00000000

u
s

e
r s

p
a

c
e

k

e
rn

e
l s

p
a

c
e

 User space

Process 1

Memory page 2 p1

Memory page 3 p1

Memory page 1 p1

Memory page 2 p1

Memory page 1 p1

Memory page 3 p1

Memory page 1 p2

Process 2

Kernel modules

kernel

kernel

Memory page 1 p2

0x10000000

0x8000…

0x8000…

TLB

(MMU)

▪ 18 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: Memory Management (2)

 During debugging, the user uses logical addresses to access programs, data,
symbols loaded into virtual memory *

 The core and the debugger can only access the active memory pages (TLB)

 TRACE32 can access the entire memory even at absolute addresses

 If a virtual memory area is not accessible, then TRACE32 computes the logical-
physical translation, and make an access to physical address.

In this way TRACE32 allows the user to access at any time and
debug in any area of memory using simple virtual addresses
(logical)

* virtual addresses (logical) correspond to the program symbols

▪ 19 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: Address Extension

Space-id = 0x0000 : kernel thread Space-id = 0x02F4 : user process PID 0x02F4

How to distinguish between kernel and process and between different processes?

 In Linux, the space-id of a process is the PID of his main thread

 The kernel and all its threads have by convention space-id = zero

 TRACE32 uses the identifier space-id to distinguish between the different
processes by extending the address space.

 The Address Extension is enabled by the command
SYStem.Option MMUSPACES ON

T32 DEMO

▪ 20 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: linux menu

Thanks to Memory Management and Address Extension TRACE32 allows the
access and debugging of any part of a Linux system.

 Debugging the kernel

 Debugging kernel modules

 Debugging processes/threads

 Debugging libraries

 Automatically loading and unloading
symbols for kernel modules,
processes and libraries

 Display kernel information
(file systems, kernel log, device tree…)

TRACE32 Linux Awareness menu

▪ 21 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debug Module on init

1

2

3

Debugging linux components: kernel module

T32 DEMO

▪ 22 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debug Process on main

1

2

 As soon as the process starts the

debugger will detect it, will

automatically load his symbols and

will stop at the main() entry

3

3

Debugging linux components: process (1)

▪ 23 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Process Debugging – Watch Processes (autoloader)

Adding a process to the "watch" list, his symbols will be automatically loaded

when it start, and deleted when it exit

add helloloop

to watch list

Start

helloloop
symbols

loaded

symbols

deleted

Debugging linux components: process (2)

▪ 24 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

 Display task specific information

Debugging linux components: process (3)

TRACE32 can show detailed informations of any process or thread

▪ 25 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: process (4)

TRACE32 can show the execution
context (program, data, registers) of
any process or thread even if
suspended, or if you are in break
elsewhere

T32 DEMO

▪ 26 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

TASK.sYmbol.LOADLIB <process_name> <lib_name>

Debugging linux components: library

TRACE32 can load symbols of any library used by a process and enable its
debugging

T32 DEMO

▪ 27 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: file system informations

TRACE32 can show detailed information about the file systems

▪ 28 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Debugging linux components: kernel log

TRACE32 can show the Kernel Log by accessing directly in memory the kernel ring
buffer

▪ 29 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

TRACE32 can load and display the Device Tree Blob (if used)

Debugging linux components: device tree

▪ 30 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

TRACE32 debugging linux

User

process in

debug

Symbols List

User process

registers, stack

Message

area

Current

process

Kernel

space code

Process

infos

Process

list

Terminal

emulator

(console)

Linux

debug

menu

User process

variables

Space-id &

address

Program

counter

TRACE32: the most complete tool for embedded linux debugging ▪ 11/10/2014 ▪ www.lauterbach.com

▪ 31 / 58 ▪

Agenda

Seminar and live demo

 Linux debugging: problems & solution

 Debugging all linux components

 Stop-mode & run-mode debugging

 Trace, performance, profiling

 TRACE32 PowerTools

 Q&A

▪ 32 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

threads

uboot

 Linux
kernel

modules

drivers

shared libs

PowerDebug JTAG debugger

Linux System

Ethernet

or USB

TRACE32 Powerview

JTAG

process

xloader
J

T
A

G

CPU

What we mean by «stop-mode debugging» ?

 Debugging via JTAG

 The "break" acts on the CPU and stops the entire linux system, including kernel,
drivers, processes

 The debugger has access to all components
of a linux system

 You do not need to run any sw monitor or agent
or to modify the kernel: the debugger accesses
directly memory and cpu registers

threads

process

shared libs

▪ 33 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

 Debugging via a communication channel: serial, ethernet

 The "break" only affects the process in debug. All other components of the linux
system still running

 The debugger can only access the process
stopped in debug mode

 gdbserver must be running in the linux system
to perform the debug task: it’s a target agent

What we mean by «run-mode debugging» ?

threads

uboot

 Linux
kernel

modules

drivers

shared libs

Linux System

process

xloader

CPU

gdbserver

Ethernet or Serial

N
e
tw

o
rk

TRACE32 Powerview can

also work as a front-end

debugger for gdbserver

TRACE32 Powerview

threads

process

shared libs

▪ 34 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

 Run-mode debugging through the communication channel JTAG DCC/DAP. Do
not need ethernet or serial link, do not need drivers, JTAG only

 In the target execute our t32server agent, connected to the debugger,
capable to start multiple gdbserver sessions

 The debugger can start/stop processes and
access to some linux resources (eg. Filesystem)

 The debugger has simultaneous access to all
processes being debugged

Advanced «run-mode debugging»

threads

uboot

 Linux
kernel

modules

drivers

shared libs

Linux System

process

xloader

CPU

gdbserver

TRACE32 Powerview

Ethernet

or USB

DCC

or DAP

J
T
A

G

gdbserver

t32server

linux info

file system

threads

process

shared libs

▪ 35 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

 Integration of stop-mode debugging and run-mode debugging via JTAG DCC/DAP

 TRACE32 can switch from stop-mode to run-mode and vice versa at any time, into
the same debug session

 It combines the best of both debug modes,
allowing users to choose the best approach to
quickly solve any bug

Integrated stop-mode & run-mode debugging

threads

uboot

 Linux

threads

kernel

modules

drivers

shared libs

Linux System

process process

xloader

gdbserver

TRACE32 Powerview

Ethernet

or USB

DCC

or DAP

gdbserver

t32server

shared libs

JTAG

CPU

J
T
A

G

Run-mode debug

Stop-mode debug

T32 DEMO

TRACE32: the most complete tool for embedded linux debugging ▪ 11/10/2014 ▪ www.lauterbach.com

▪ 36 / 58 ▪

Agenda

Seminar and live demo

 Linux debugging: problems & solution

 Debugging all linux components

 Stop-mode & run-mode debugging

 Trace, performance, profiling

 TRACE32 PowerTools

 Q&A

▪ 37 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

What is the Trace?

With the term "trace" we mean a system for recording the

sequence of instructions executed and data read/written by a

CPU, without having to stop it.

Debugging

Taking Pictures

Real-Time Tracing

Recording a Video

▪ 38 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Trace ARM, ETM & ETB

Most of the chips have a trace-port through which the flow trace is

transmitted outside: off-chip trace

In the case where the trace port is not available, it is possible to use

a trace buffer internal to the chip called ETB (Embedded Trace

Buffer). It is a on-chip trace, typically limited to a few KByte, for

which, additional hardware is not needed.

In the ARM/Cortex™ cores the off-chip trace port

is called ETM (Embedded Trace Macrocell). It is a

parallel or serial port at high speed. Lauterbach

has made several trace-probes to support

different types of trace ports.

▪ 39 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Off-chip trace ETM: recording

PowerTrace II

Trace Storage (up to 4 Gbyte)

TRACE32 PowerView

Trace Analysis
ARM/Cortex™ chip with debug-port

and trace-port

Ethernet

or USB

While the core is running, the trace port transmits program flow and data

information in a compressed way. The method has no special restrictions:

J
T
A

G

T
R

A
C

E

ARM/Cortex™ chip

• Few pins are required

• Allows very high speeds

• Allows trigger, filtering, data trace

CORE

ETM Trace

Generation

Debug Port

Trace Flow ETM Recording

▪ 40 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Off-chip trace ETM: streaming

PowerTrace II

Trace FIFO Buffer (up to 4GB)

TRACE32 PowerView

Trace Analysis

Normally, the trace is recorded inside PowerTrace which has a storage from

512MB up to 4GB. The recording time can be extended indefinitely using

TRACE STREAMING. In this way, the trace-flow is compressed by PowerTrace

II and transferred via gigabit ethernet to the host-PC, where it is registered.

J
T
A

G

T
R

A
C

E

ARM/Cortex™ chip

CORE

ETM Trace

Generation

Debug Port

Trace Flow ETM Streaming

HW Compression

Gigabit

Ethernet

Hard Disk

up to 1 Tera

Frame

Recording

ARM/Cortex™ chip with debug-port

and trace-port

▪ 41 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

The Real-Time Trace is used for:

Analyze code performance

Analyze effect of external events

2) Optimization with time measures

Demonstrate compliance with real-time

requirements

Check the code coverage

3) Qualification
ISO
26262

1) Trace-based Debugging

Fast debugging without stopping CPU

Finding bugs that only appear in real-time

▪ 42 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Real-time trace with Linux

 The transmission of the ETM trace is a hardware feature of the chip, it is

non-intrusive and requires no modification to Linux

 The ETM trace transmits the logical addresses of program execution. But

in Linux processes are all running at the same logical addresses

How to distinguish them?

 Is necessary to capture with trace also the identifier of process switches

(space-id) in order to associate the recorded code to the proper linux

system component

▪ 43 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Trace with Linux: task switch

The identifier of the task switch can be easily captured by tracing writes to the

variable "current process" or by tracing the "contextID" which is a ARM core

register that Linux kernel updates at every task switch.

The value written (task_struct *) identifies the process and allows the immediate

association of the recorded code to the proper component of the Linux system.

▪ 44 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Trace with Linux: task profiling

Task State

runtime chart

Task Timing

statistic

Task Scheduling

runtime chart

▪ 45 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Trace with Linux: code profiling

Statistic Tree

Analysis

Function tree profiling

of function «printk»

▪ 46 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Trace with Linux: code coverage (1)

Code coverage

by object files

Code coverage

by functions

▪ 47 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Trace with Linux: code coverage (2)

Code coverage

source code

level

T32 DEMO ??

▪ 48 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

The trace is an important choice

The choice of trace method depends mainly on the CPU being used

and its resources.

The results obtained depend on

the quality of the trace tool.

The Trace is…

 The tool that allows you to "see" what really happens

 during the execution of your application.

The Trace should be considered as…

 The instrument to reduce development time and the best

 guarantee to quickly find and resolve bugs

TRACE32: the most complete tool for embedded linux debugging ▪ 11/10/2014 ▪ www.lauterbach.com

▪ 49 / 58 ▪

Agenda

Seminar and live demo

 Linux debugging: problems & solution

 Debugging all linux components

 Stop-mode & run-mode debugging

 Trace, performance, profiling

 TRACE32 PowerTools

 Q&A

▪ 50 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Lauterbach PowerTools

PowerDebug

(debug)

PowerTrace

(debug+trace)

PowerIntegrator

(debug+trace+logic analyzer)

Lauterbach is the world leader for debug and trace tools, with over 30 years of
experience. TRACE32 PowerTools are the most advanced hw/sw debugger
available today. It is a universal and modular hardware system that support debug-
port and trace-port of many different cpu and architectures.

▪ 51 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

In Circuit Debuggers

PowerDebug USB-3
•Entry level system
• Link USB2/USB3

PowerDebug ETH
•Standard System
• Link USB + Eth 10/100 mbps
•Upgradable to PowerTrace

PowerDebug II
•New generation system
Link USB + Eth 10/100/1000 mbps
•Upgradable to PowerTrace II

Debug Cables
•Support for all CPUs
•Support for each debug-port
•Active probes at high speed
•Compatible with all PowerDebug units

A debugging system based on
modular PowerDebug units
connected to debug cables specific to
different architectures and debug
ports

▪ 52 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

In Circuit Trace

A debug+trace system based on modular
PowerTrace units that connect debug cables
and trace probes specific for different
architectures and different trace-port

PowerTrace
• First generation system
• 512MB trace storage
•Up to 350 Mhz trace clock

PowerTrace II
•New generation system
• 1/2/4 GB trace storage
• > GHz trace clock (HSTP)
• Trace Streaming

PowerDebug Combiprobe
• Low-cost system
• 128MB trace storage
• 200 Mhz max trace clock
• 1-4 bit trace port

Trace Probes
Autofocus
•Parallel trace
ETM/NEXUS, …
•Serial Trace
HSTP Aurora, …

▪ 53 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

Logic Analyzers

Any PowerDebug and PowerTrace can be greatly enhanced with the addition of a

integrated logic/protocol analyzer: PowerIntegrator.

A PowerIntegrator can be used for:

PowerIntegrator II
•Max 256000 K-Sample
•Max 102 channels
•Max 500 Mhz
•Stimuli Generator

PowerIntegrator
• 512 K-Sample
•Max 204 channels
•Max 500Mhz

• I/O timing & trigger

•Protocol analyzer

 CAN, FlexRay, LIN, SPI, USB,

 I2C, Jtag, Seriale, PCI, DigRF, …

• Data logger

• Energy test

• Bus-trace

 for cpu without trace port

Probes
•Digital and analog
• For protocols
• For memory bus

▪ 54 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

TRACE32 PowerView for linux/QT

TRACE32 PowerView is available for Windows, MacOS-X, and Linux and
Workstations. Is now available a new version of PowerView GUI for linux QT. Both
the new QT version and old Motif version are available on TRACE32 software
DVD.

New QT GUI

Old Motif Gui

TRACE32: the most complete tool for embedded linux debugging ▪ 11/10/2014 ▪ www.lauterbach.com

▪ 55 / 58 ▪

Agenda

Seminar and live demo

 Linux debugging: problems & solution

 Debugging all linux components

 Stop-mode & run-mode debugging

 Trace, performance, profiling

 TRACE32 PowerTools

 Q&A

▪ 56 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

To learn more:

Web

 Linux Training (training manual)
www.lauterbach.com/pdf/training_rtos_linux.pdf

 RTOS Debugger for Linux (manual)
www.lauterbach.com/doc/rtoslinux.pdf

 TRACE32 Startup Script (repository)
www.lauterbach.com/scripts.html

 Linux Debugging Reference Card
www.lauterbach.com/linux_card1_web.pdf

Flyers

 Debug & Trace for ARM

 Product Overview

 Linux Flyer Advanced Debugging and Tracing
tools for ARM architectures and Linux kernels

http://www.lauterbach.com/pdf/training_rtos_linux.pdf
http://www.lauterbach.com/doc/rtoslinux.pdf
http://www.lauterbach.com/scripts.html
http://www.lauterbach.com/linux_card1_web.pdf
http://www.lauterbach.com/linux_card1_web.pdf

▪ 57 / 58 ▪

TRACE32: the most complete tool for embedded linux debugging ▪ 1/10/2014 ▪ www.lauterbach.com

NO

YES Answers... Questions?

Q&A…

Linux? Kernel?

Target? CPU?

Connector?

END

Debug? Trace?

PowerDebug?

JTAG?

www.lauterbach.com

Maurizio Menegotto
maurizio.menegotto@lauterbach.it

Contact for Italy:

Lauterbach SRL
tel: 02-45490282
web: www.lauterbach.it
email: info_it@lauterbach.it

Thank you for partecipating to the

seminar: the most complete tool for

embedded linux debugging

International contact:

Lauterbach GmbH
web: www.lauterbach.com
email: info@lauterbach.com

